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l. Dynamical setting for certain classes of PDEs

Consider = + Au = f(u)

where © € X = function space, A = linear operator, { = nonlinear term

To definea C” dynamical system, need (X, | ||) s.t.

(1) uwp € X = u(t) existsandisuniquein X forall ¢ >0,
so semiflow  f': X — X is well defined

(2) tr~> u(t) is continuous for t >0

(3) ft € " foreach t This imPO;?S Eg;fl“‘lct‘l‘c;n on the choice

Remark : (1) is necessary for purposes of studying global dynamics.
(3) is important if one is to leverage finite dim geom/differentiable techniques
[Can do with less for e.g. construction of special solutions etc.]
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THEOREM. Given
ou + Au = F(u) , u€e X, A sectorial,
if forsomea€|0,1) , F:X*—>X isC',r>1 |,
then forall uo € X | there exists a unique ©(t) € X°
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Solution here means mild solution, i.e.

t
u(t) = e~ g +/ e~ A=) P(u(s))ds
0



l. Three sample results for general (X, f, 1)

Setting : X = Banach or Hilbert space
F:[0,00) x X — X cts semiflow, fi(z) = F(t,2)



l. Three sample results for general (X, f, 1)

Setting : X = Banach or Hilbert space
F:[0,00) x X — X cts semiflow, fi(z) = F(t,2)

Assume (1) Flgooyxx is C°



l. Three sample results for general (X, f, 1)

Setting : X = Banach or Hilbert space
F:[0,00) x X — X cts semiflow, fi(z) = F(t,2)

Assume (1) Flgooyxx is C°
2) f*, Dft injective [backward uniqueness]



l. Three sample results for general (X, f, 1)

Setting : X = Banach or Hilbert space
F:[0,00) x X — X cts semiflow, fi(z) = F(t,2)

Assume (1) Flgooyxx is C°
2) f*, Dft injective [backward uniqueness]

(3) existence of compact A C X , f{(A) = A [attractor]

Basic fact : existence of invariant prob measures on A (often many)



l. Three sample results for general (X, f, 1)

Setting : X = Banach or Hilbert space
F:[0,00) x X — X cts semiflow, fi(z) = F(t,2)

Assume (1) Flgooyxx is C°
2) f*, Dft injective [backward uniqueness]
(3) existence of compact A C X , fi1(A) = A [attractor]

Basic fact : existence of invariant prob measures on A (often many)

Result # |: Lyapunov exponents (Multiplicative Ergodic Theorem)

(" )
THEOREM (finite dim) (Oseledec ~ 68) : f : M® — M diffeo, 1+ inv prob
(Ergodic version) There exist A1 > Ay > --- > A\, s.t

at p—a.ex, T,M=F(zx)® - -&FE. ()




l. Three sample results for general (X, f, 1)

Setting : X = Banach or Hilbert space
F:[0,00) x X — X cts semiflow, fi(z) = F(t,2)

Assume (1) Flgooyxx is C°
2) f*, Dft injective [backward uniqueness]
(3) existence of compact A C X , fi{(A)= A [attractor]

Basic fact : existence of invariant prob measures on A (often many)

Result # |: Lyapunov exponents (Multiplicative Ergodic Theorem)

(" )
THEOREM (finite dim) (Oseledec ~ 68) : f : M® — M diffeo, 1+ inv prob
(Ergodic version) There exist A1 > Ay > --- > A\, s.t

at p—a.ex, T,M=F(zx)® - -&FE. ()
1
and forallv € Ej(x) , 1im — log||DfX(w)|| = £\

n— +o0o ‘n|

Z(E;, E;) varying slowly along orbits
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Remark : To distinguish expanding , neutral & contracting directions,
i.e. tohave F“ @ E° @ E? , assume logk < 0 from here on

Also known : local stable and unstable manifolds W?*°, W*" u — a.e.

Result #2. Lyap exp, periodic solutions & horseshoes
X = Hilbert space, f'= (C?semiflow, i = Lyap exp
Finite dim diffeo version of following proved by Katok (1980)

P
THEOREM (Lian-Young 2013)
Assume (a) ergodic and (b) exactly one 0-exp (flow direction). Then :

(I) f \, <0V i, then pu is supported on a stable periodic solution

(2) If A; >0 for some i ,then either
ft is supp on an unstable periodic periodic solution

or there are infinitely many unstable periodic solutions

(3) If h,(f) > 0 (metric entropy) [which= A; > 0 for some i ],
then (i) almost all entropy is supported on horseshoes
(i) # periodic solutions of period < s grows exp with $
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Review

Entrop)l (Kolmogorov-Sinai 1959)
measure of dynamical complexity in the sense of information theory

o ={A,--- A} partition, H(a)=-> pilogp;, pi=p(A;)
Then hu(f) — sup H (a | \/f’éoz>
. 1

Interpretation : amount of uncertainty in predicting (¢- location of a point
given its past (or future)

Horseshoes (smale 1960s finite dim)

B B
) Dynamical complexity :
— > existence of orbits corresp to
all sequencesin {L, R}

Interpretation in inf dim : existence of two (distinguishable) sets

of functions (profiles) o, U1 s.t.

given any sequence (a;),a; =0or1, 0 i

there is a solution u(t)s.t. /- B /"'"—“/\ 7
u(ity) € Uy, for some ¢,. / S L a
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Setting as before : f is (“ map of Banach space etc.

g : :
THEOREM (Thieullen 1980s) For any invariant measure p

ha(f) < / Y A dim E; dy

This generalizes Ruelle’s Inequality first proved in finite dim.

‘"THEOREM (Blumenthal-Young 2015)  Assume no 0 Lyap exponents.
Then # is an SRB measure if and only if ho(f) = ZA'+ dim E; dy -

G

This generalizes results of Ledrappier and Ledr-Strelcyn for fin dim diffeos.

Definition. [ is called an SRB measure if (f, 1) has pos Lyap exp
and & has smooth conditional densities on unstable manifolds.

Interpretation :
Inequality says entropy dominated by exp rate of divergence of solutions.
Equality says the divergence rates = entropy iff measure in “Lebesgue” meas class
in unstable directions
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h,(f) = / Z)\j dim F; du iff w~ Leb on WH

e h ~ growth rate of # p—typical distinguishable 11 -orbits ¢ M Millan

-Breiman Theorem

~ - rate at which typical \/(f—??a)(x) decreases
0

* Y A dimE; ~ rate of volume growth in unstable directions

()
* hence 2 growth rates are equal when i1 ~ volume.

Volumes on Banach spaces ??
First, note dim(E") < oo in dissipative systems.

Can define, on each subspace ¥ C X, dim E = k , avol element ME
s.t. mpg(B1) = cp where By = unitball, ¢, = Leb (Bj) in R"

(Busemann-Hausdorff vol in Finsler geom)

Regularity issues : how mpg and assoc det(df,|FE) vary with £

We proved : sufficient for results above (but can be problematic elsewhere)

Other technical issues : e.g. regarding dynamical objects characterized
by “backward iterates” + their regularity
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* In finite dim, a more persistent, observable kind of chaos/instability
is pos Lyap exp Leb-a.e. or on pos Leb meas set, i.e.

[observable events = positive Leb meas setsj

- Hamiltonian systems : Liouville measure natural
- Dissipative systems : SRB measures are natural invariant measures
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\_ 1=0 J

Follows from the absolute continuity of V¥ ° foliation.  (Pugh-Shub *90)

Infinite dim counterpart?

e.g. pos meas set of Fourier coefficients !
probing phase space with finite dim spaces!?
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and similar for C® backward invariant, contract A; < min{0, \}

closed subspace,
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not nec invariant

(Al)-(A3) satisfied by e.g.
Uy = AU—I—Q(U), x e Q) CC R, ’LL‘@Q =0
Uy — Au+ yur + g(u) =0, € QCC R, ulgo=0, v>0.
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i.e. if Xq,3o =disks transversal to W?, (Lian-Young-Zeng 2013)

and 6 :X; — X2 is holonomy along W *leaves,
then Leb(6(A)) < c Leb(A) for all Borel A C ¥ .

E(/

Interpretation:
(a) : large-time dynamics near finite dim mfd
(b) : for each up € X ,dvg € W° s.t.
|u(t) —v(t)|| = 0 exp fast as t — oo 71 ;
7] E

(c) : notion of “almost everywhere” in X
Leb measure class on W passed to k-dim’l mfds transversal to W*
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THEOREM (Blumenthal-Young 2015)  Consider general (f, 1) as in Part |l
Assume { is SRB with no 0 Lyap exp. Then W?-foliation is abs cts.

Interpretation : notion of "a.e.” makes sense in neighborhood of attractor.

Remarks : In finite dim,

(1) SRB measures are believed to be present for many chaotic attractors, but
proving is challenging (except where exp & contr directions are separated)

(2) Progress made for rank-one attractors (dim E* = 1),

which occur often following a system’s loss of stability. (Vang-Young, 2002-05)

Sample result #2. Example of an attractor with observable chaos
phenomenon occurs in finite as well as infinite dim (ODE or PDE)

Idea : shear induced chaos (Youngetal 2000s)

Unforced system : simple dynamics, some "‘shearing” in phase space
Here : Hopf bifurcation, limit cycle following loss of stability

Periodic forcing : magnifies shear to stretch and fold phase space, producing
" 'strange attractor’ with open set of pos Lyap exp “a.e.” in open set
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"THEOREM (Lu-Wang-Young 2013) X — Hilbert space

Ou=A,+ fu(u) + rwPr(t), uwvelX
Unforced system : assume generic supercrit Hopf bif at ¢ = 0

Forcing (last term) : Pr(t) | ‘
k : X — X arbitrary, smooth T—
k(0) # 0 .

THEN for( R E OIS ) large enough, there is a pos Leb meas set
of T' <1 for which the flow-map &, 7 has an attractor w/ SRB measure.

\Consequently, there is an open set in X with pos Lyap exp “a.e.’:
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e.g. periodically forced Brusselator (autocatalytic chemical reaction)
near Hopf bifurcation

ur = diAu+a— (b+ 1)u+ vv

+ periodic forcing

vy = doAv + bu — uv

’ f / wgs For suitable ,u,T,

MT o &, 1 has pos Lyap exp Leb-a.e.
on 2D center manifold W

T W e carried by strong codim-2 7}/ 39 foliation
' i Y St |
to a.e. inan open setin
‘ l ( inf dim phase space
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(of diffeomorphisms and of flows generated by ODEs)

* | have tried to report on extensions of this theory to infinite dim,
to settings that include dissipative PDEs .

* For inf dim systems with a finite dim character, e.g. finite dim £
technical issues largely resolvable, and theory carried over thus far.

Sample results : entropy, Lyap exp, horseshoes, SRB measures,
absolute continuity of invariant foliations , strange attractors

* Inherent issue in deterministic dynamics, both finite/infinite dim :
which invariant measures reflect what we see/are more important ?

- In finite dim : positive Leb meas sets = observable events
- In infinite dim ??? Introduced notion of almost everywhere”



