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    For dynamical systems  defined by maps or flows (ODEs),          
        ergodic theory offers a description of their global dynamics
               in terms of averages  &  almost sure behaviors

(useful for complicated dynamics,  less so for special orbits)

·

   In finite dim,  there is a fairly well developed smooth ergodic theory.
   This talk is about : extension of this theory to infinite dimensions. 
·

· Basic objects in this theory are   (1) phase space        , 
  (2) dynamics      ,    and    (3) notion of what is typical      

X
f t µ

·Outline of this talk 
  

I. Dynamical setting for certain classes of PDEs
II. 3 sample results for general
III. Existence vs observability of dynamical complexity

(X, f t, µ)

 * sample results      * differences between fin and infinite dims 
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I.  Dynamical setting for certain classes of PDEs

 Consider                                                
 
     where                function space,           linear operator,          nonlinear term                 

du

dt
+Au = f(u)

 To define a          dynamical system,  need                    s.t. 

(1)                                  exists and is unique in       for all           ,

          so semiflow                         is well defined

(2)                    is continuous for          

(3)                   for each  This imposes restriction on the choice
              of 

Remark :  (1) is necessary for purposes of studying global dynamics.
 (3) is important if one is to leverage finite dim geom/differentiable techniques
           [Can do with less for e.g.  construction of special solutions etc.]
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A sample result       (Henry  ~ 1980)

 Banach sp ,         sectorial operator  (equiv           analytic semigp)

Fact :  There exist                           interpolation spaces                       

stronger                                                weaker              

THEOREM.  Given 
 sectorial ,

if   for some                  ,                          is                    ,
then  for all                 ,  there exists a unique                    
    and                          is a        map  from                    to                   . 

Solution here means mild solution, i.e. 
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II.  Three sample results for general 
Setting :            Banach or Hilbert space
                                            cts semiflow ,     

Assume  (1)                      is 

(2)                     injective        [backward uniqueness]  

(3)  existence of compact                                         [attractor]

Basic fact :  existence of invariant prob measures on        (often many)

Result # 1:  Lyapunov exponents (Multiplicative Ergodic Theorem)

THEOREM (finite dim) (Oseledec ~ 68) :                         diffeo,     inv prob
(Ergodic version)  There exist                                   s.t.

at

and for all 

\(Ei, Ej) varying slowly along orbits
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Biggest differences between finite and infinite dims :

1.          not invertible   
 2.   Presence of essential spectrum

For single operator                           define

Kuratowski measure of noncpctness  (essential spectral radius)
In ergodic theory setting,  

well defined 

THEOREM    (Ruelle, Mane, Thieullen 80s,  Lian-Lu 2010, . . . )

(Ergodic version)  In inf dim setting above, for any               there exist             
and a decomp                

s.t. 

and       [angles repl by            
      proj along complements]
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Result #2.  Lyap exp, periodic solutions & horseshoes

Finite dim diffeo version of following proved by Katok  (1980) 

Hilbert space,                  semi flow ,            Lyap exp      

Remark :  To distinguish  expanding ,  neutral  &  contracting directions,
 i.e.  to have                          ,  assume                  from here on
Also known :  local stable and unstable manifolds                           

log  < 0

THEOREM  (Lian-Young 2013)  
 Assume (a) ergodic   and   (b) exactly one 0-exp (flow direction).  Then :
  

   (1)  If                  ,   then      is supported on a stable periodic solution         

(2)  If                                  then either
         is supp on an unstable periodic periodic solution
or  there are infinitely many unstable periodic solutions

(3)  If                    (metric entropy)  [which                                  ],   
then  (i) almost all entropy is supported on horseshoes
        (ii) #  periodic solutions of period          grows exp with

=) �i > 0 for some i
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ReviewEntropy                
  measure of dynamical complexity in the sense of information theory

(Kolmogorov-Sinai 1959)

partition , ,
Then

Interpretation :  amount of uncertainty in predicting     - location of a point
                        given its past (or future)

Horseshoes   (Smale 1960s  finite dim)

Dynamical complexity : 
existence of orbits corresp to 
all sequences in 

f

B B

Interpretation in inf dim :  existence of two (distinguishable) sets 
of functions (profiles)               s.t.  
given any sequence 
there is a solution        s.t.                       
                    for some     .                   

U0, U1

(ai), ai = 0 or 1 ,
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Result #3.   Entropy, Lyap exp and SRB measures

THEOREM  (Blumenthal-Young 2015)     Assume no 0 Lyap exponents.
  Then       is an SRB measure if and only if                                           .

This generalizes results of Ledrappier and Ledr-Strelcyn for fin dim diffeos.  

 Definition.      is called an SRB measure if           has pos Lyap exp
       and      has smooth conditional densities on unstable manifolds.

Interpretation :  
  Inequality says entropy dominated by exp rate of divergence of solutions.
  Equality says the divergence rates = entropy iff measure in “Lebesgue” meas class
                                                                       in unstable directions

Setting as before :      is        map of Banach space  etc.

This generalizes Ruelle’s Inequality first proved in finite dim.

 THEOREM  (Thieullen 1980s)  For any invariant measure     ,
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Volumes on Banach spaces ???
First, note                          in dissipative systems. 

Can define,  on each subspace            ,                     ,  a vol element
  

    s.t.                           where            unit ball,                          in
                                

mE

mE(B1) = ck B1 = ck = Leb (B1) Rk

(Busemann-Hausdorff vol in Finsler geom)

mE det(df
x

|E)Regularity issues :  how          and assoc                      vary with   E
We proved : sufficient for results above (but can be problematic elsewhere)            

Other technical issues : e.g. regarding dynamical objects characterized 
                      by  “backward iterates” + their regularity

           growth rate of #      typical distinguishable    -orbits

How to make sense of

 - rate at which typical                            decreases

                           rate of volume growth in unstable directions     

Shannon-McMillan
-Breiman Theorem

    hence 2 growth rates are equal when         volume.       

·

··
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 III.  Dynamical complexity: existence vs observability
   Presence of horseshoes implies existence of unstable orbits
      —  almost all other initial conditions may tend to stable equilibrium

   In finite dim, a more persistent, observable kind of chaos/instability
    is pos Lyap exp Leb-a.e.  or  on pos Leb meas set,  i.e. 

Infinite dim counterpart ?
e.g.  pos meas set of Fourier coefficients ?
   probing phase space with finite dim spaces?

observable events = positive Leb meas sets

·
·

 - Hamiltonian systems :  Liouville measure natural
 - Dissipative systems :  SRB measures are natural invariant measures

1

n

n�1X

i=0

'(f i
x) !

Z
'dµ Leb-a.e. x

THEOREM.   For            ergodic, no 0-Lyap exp,

for all cts 

(f, µ)

'

Follows from the absolute continuity of         foliation.W s (Pugh-Shub ’90)
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Sample result #1.  Absolute continuity of stable foliations
        &  a notion of ``almost everywhere” in Banach spaces

Setting 1.  Center / initial manifolds Existence of       proved many times
e.g.  Constantin-Fois-Nicolaenko 80s, 
      Chow, Sell, Mallet-Paret, Lu …..

W c

Geometric conditions
Banach space,    X = f : X ! X C1+↵, ↵ > 0

(A1) Reference splitting  
X = Ec � Es closed subspace,

not nec invariant(A2)  Absorbing slab
8R, 9R0 s.t. f(Ec ⇥Bs(R)) ⇢ Ec ⇥Bs(R0)

(A3)  Invariant cones

then Df

x

(Cc(x)) ⇢ Cc(fx) and 8v 2 Cc

, k⇡c

Df

x

vk � e

�k⇡c

vk
9µ 2 (0, 1),�c 2 R s.t. if Cc = {v : k⇡svk  µk⇡cvk} ,

and similar for     ,  backward invariant,  contract  Cs �s < min{0,�}

(A1)-(A3) satisfied by e.g.  

utt ��u+ �ut + g(u) = 0, x 2 ⌦ ⇢⇢ Rn
, u|@⌦ = 0, � > 0 .

ut = �u+ g(u), x 2 ⌦ ⇢⇢ Rn
, u|@⌦ = 0
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THEOREM .   Under conditions (A1)-(A3),

(a) Existence of center manifold            [known]       W c

W c = graph (hc) , hc : Ec ! Es, C1+↵

(b) Existence of stable       foliation       [known]W s

For each      
    s.t.                                  ,   contract by       along        leaves

x 2 X, W

s(x) = graph(hs

x

) , h

s

x

: Es ! E

c

f(W s(x)) ⇢ W

s(fx) �s W s

(c)  Absolute continuity of      -foliation in the case               W s dim(W c) < 1
(Lian-Young-Zeng 2013)i.e.  if                disks transversal to       , ⌃1,⌃2 = W s

and                       is holonomy along       -leaves, ✓ : ⌃1 ! ⌃2 W s

then Leb(✓(A))  c Leb(A) for all Borel A ⇢ ⌃1 .

Interpretation :  
(a) :  large-time dynamics near finite dim mfd
(b) :  for each  u0 2 X , 9v0 2 W c s.t.

ku(t)� v(t)k ! 0 exp fast as t ! 1
(c) :  notion of “almost everywhere” in X

Leb measure class on        passed to k-dim’l mfds transversal toW c W s
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Remarks :  In finite dim,
  

(1) SRB measures are believed to be present for many chaotic attractors, but 
proving is challenging  (except where exp & contr directions are separated)

(2) Progress made for rank-one attractors (                   ),
(Wang-Young,  2002-08)which occur often following a system’s loss of stability.  

dimEu = 1

Sample result #2.  Example of an attractor with observable chaos
phenomenon occurs in finite as well as infinite dim  (ODE or PDE)

Idea :  shear induced chaos   (Young et al  2000s)
Unforced system :  simple dynamics, some ``shearing” in phase space
       Here : Hopf bifurcation,  limit cycle following loss of stability 
Periodic forcing :  magnifies shear to stretch and fold phase space, producing
       ``strange attractor” with open set of pos Lyap exp “a.e.” in open set 

Setting 2.  SRB measures

THEOREM  (Blumenthal-Young 2015)    Consider general            as in Part II.                    (f, µ)

 Assume      is SRB with no 0 Lyap exp.  Then       -foliation is abs cts.µ W s
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Generic supercritical Hopf bifurcations i.e.
ẋ = hµ(x) , hµ(0) = 0 8µ ,

µ = 0pair of cx eigenvalues cross Im-axis at 

 = limit cycle,  
radius ⇠

p
µ

Normal form :  ż = k0(µ)z + k1(µ)z
2z̄ + k2(µ)z

3z̄2 + · · ·
Introduce  twist number 

generic : 
Re k1(0), Im k1(0) 6= 0⌧ =

Im k1(0)

�Re k1(0)

THEOREM  (Lu-Wang-Young 2013)          Hilbert space    X =

Unforced system :  assume          sectorial,  generic supercrit Hopf bif at �Aµ µ = 0
@tu = Aµ + fµ(u) + (u)PT (t) , u 2 X

Forcing (last term) :  
 : X ! X arbitrary, smooth

⇡c(0) 6= 0

THEN for                                      large enough,  there is a pos Leb meas set|⌧ | · k⇡c(0)k · µ� 1
2

Consequently,  there is an open set in     with pos Lyap exp ``a.e.” 
of              for which the flow-map          has an attractor w/ SRB measure. T ⌧ 1 �µ,T

X

PT (t)



Generic supercritical Hopf bifurcations i.e.
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Normal form :  ż = k0(µ)z + k1(µ)z
2z̄ + k2(µ)z

3z̄2 + · · ·
Introduce  twist number 

generic : 
Re k1(0), Im k1(0) 6= 0⌧ =

Im k1(0)

�Re k1(0)

THEOREM  (Lu-Wang-Young 2013)          Hilbert space    X =

Unforced system :  assume generic supercrit Hopf bif at µ = 0

@tu = Aµ + fµ(u) + (u)PT (t) , u 2 X

Forcing (last term) :  
 : X ! X arbitrary, smooth

⇡c(0) 6= 0

THEN for                                      large enough,  there is a pos Leb meas set|⌧ | · k⇡c(0)k · µ� 1
2

Consequently,  there is an open set in     with pos Lyap exp ``a.e.” 
of              for which the flow-map          has an attractor w/ SRB measure. T ⌧ 1 �µ,T

X

PT (t)



Generic supercritical Hopf bifurcations i.e.
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|⌧ | · k⇡c(0)k · µ� 1
2Geometric meaning of 

t=0+ t=3 t=6 t=6+ t=9 t=12

e.g. periodically forced Brusselator  (autocatalytic chemical reaction)
       near Hopf bifurcation

+ periodic forcing {ut = d1�u+ a� (b+ 1)u+ u2v

vt = d2�v + bu� u2v

For suitable         , 
  

           has pos Lyap exp Leb-a.e.  
   on 2D center manifold           , 
 

   carried by strong codim-2          foliation 
   to ``a.e.”  in an open set in 
   inf dim phase space

µ, T

�µ,T

W c
µ,T

W ss·
·
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Summary

   Inherent issue in deterministic dynamics, both finite/infinite dim : 
     which invariant measures reflect what we see/are more important ?
  

   - In finite dim :  positive Leb meas sets = observable events
   - In infinite dim ???   Introduced notion of ``almost everywhere”  

·

 In finite dim,  there is a fairly well developed smooth ergodic theory
    (of diffeomorphisms and of flows generated by ODEs) 
·

 I have tried to report on extensions of this theory to infinite dim,
    to settings that include dissipative PDEs .
·
   For inf dim systems with a finite dim character, e.g. finite dim       ,  
     technical issues largely resolvable, and theory carried over thus far.
   

   Sample results :   entropy ,  Lyap exp ,  horseshoes ,   SRB measures, 
                 absolute continuity of invariant foliations ,   strange attractors
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