Systems with linear constraints on velocities

No sliding: $\omega + v r = 0$

$$\ddot{\phi} + \sin \phi = 0$$

Friction does not perform work, so the energy is conserved

"Rubber ellipsoid": rolling without sliding or rotation

- 2 coordinates + 3 angles =5 degrees of freedom =10 variables
 - 3 angular velocities
 - 2 coordinates and 1 angle (for the Euclidian symmetry)
- = 4 variables remaining

Energy is conserved, but the system on a 3-dimensional energy level does not preserve the phase volume!

ATTRACTOR-REPELLER MERGER

Chaplygin ball (rubber body) dynamics for different energies (by A.Kazakov)

THIRD TYPE OF CHAOS Classification of Chaos (by Sergey Gonchenko) attractor repeller DISSIPATIVE CHAOS **CONSERVATIVE CHAOS** Marble body (+1 rotation velocity) dynamics for different parameter values (by A.Gonchenko)

How to define attractor?

- 1. Attractor must attract something
- ?

An asymptotically stable transitive set does not always exist:

2. Attractor must retain orbits

4. Attractors must exist

Conley-Ruelle-Hurley attractor: Chain-transitive set at the intersection of a sequence of nested absorbing domains

At least one CRH-attractor exists for every system!

The set of all points attainable from a given point by \mathcal{E} -orbits for any given fixed \mathcal{E} is an absorbing domain

Inside each absorbing domain lies a maximal attractor $A = \bigcap_{n>0} f^n(D_{\epsilon})$ $f(cl(D_{\epsilon})) \subset D_{\epsilon}$

If it is not chain-transitive, there is a smaller absorbing domain

 D_{ϵ}

The process stops at a CRH-attractor

For a conservative system with a compact phase space each point is chain-recurrent

- 1. Conservative chaos = the entire phase space is CRH-attractor
- 2. Dissipative chaos=a CRH-attractor that does not intersect CRH-repellers= = it attracts some ε-orbits

```
3d type of chaos = Reversible Core =
= a CRH-attractor which is also a CRH-repeller =
= it does not attract anything
```


A reversible core is a limit of infinitely many attractors and repellers

Numerically, RC looks like an intersection of an attractor and a repeller which almost coincide

Every elliptic point of a generic reversible 2Dmap is a reversible core

 $1 \le j \le \frac{q}{3}$

 $f^{-1} = g \circ f \circ g$ $g \circ g = id$

Symmetric fixed point: g(x)=x, f(x)=x $(x \in f(Fix g) \cap Fix g)$

$$\lambda_{1,2} = e^{\pm 2\pi i (\frac{p}{q} + \mu)}$$

A=0

Resonance of order q:
$$\dot{z}=i\mu z+i\sum |\Psi_j|z|^{2j}z+iA(z^*)^{q-1}+iBz^{q+1}+iCz(z^*)^q$$

(due to non-conservative resonances)

Gonchenko, Lamb, Rios, Turaev

Every elliptic point of a C^r -generic reversible map (with dim(Fix g) $\geq n/2$)

is a limit of a sequence of hyperbolic attractors and repellers (born from periodic spots)

Gonchenko, Turaev:

EVERYTHING can be born from periodic spots

A C ^r-generic reversible map with an elliptic point is C r-universal

Mechanical systems with nonholonomic constraints

Newton law:
$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i} \right) = m_i \ddot{x}_i = F_i$$
 (*i=1,...,N*)

$$\frac{dt}{dt} \left(\frac{\partial \dot{x}_i}{\partial \dot{x}_i} \right) = m_i n_i \qquad (1 - 1) m_i n_i$$

$$T = \sum_{i} m_{i} \frac{\dot{X}_{i}^{2}}{2}$$
 coordinate transformation $X \rightarrow Q$

$$\frac{d}{d}\left(\frac{\partial L}{\partial L}\right) - \frac{\partial L}{\partial L} = E'$$
Nonh

Conservative case:
$$F'_i = 0$$

The energy $I - \sum_{i=1}^{n} \frac{\partial L}{\partial x_i}$ is conserved

The energy $L - \sum_{i} \dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}}$ is conserved

Holonomic constraint
$$G(q)=0 \longrightarrow G'(q)\dot{q}=0$$

Symmetry

Symmetry
$$\frac{\partial L}{\partial q} = 0 \longrightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0 \longrightarrow \frac{\partial L}{\partial \dot{q}} = const$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) - \frac{\partial L}{\partial q_{i}} = F_{i}'$$

$$= 0$$

$$\frac{\partial L}{\partial L} = 0$$
The energy is conserved

The energy is conserved
$$\sum_{i} \dot{q}_{i} F'_{i} = 0 \longrightarrow F'_{i} = \sum_{j} \mu_{j} a_{ji}$$

$$\frac{d}{dt} \sum_{j} a_{ji} (q) \dot{q}_{i} = 0 \qquad (j=1,...,s)$$

Mechanical systems with nonholonomic constraints

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = \sum_{j} \mu_j a_{ji}(q) \quad (i=1,...,N)$$

$$\sum_{i} a_{ji}(q) \dot{q}_i = 0 \quad (j=1,...,S)$$

$$\mu_j \text{ are found from the conditions}$$

$$\frac{d}{dt} \sum_{i} a_{ji}(q) \dot{q}_i = 0 \quad (j=1,...,S)$$
which make S of those equations redundant

(2N-S) - dimensional system of ODEs for N coordinates and (N-S) velocities

The energy
$$L(q,\dot{q}) - \sum_{i} \dot{q}_{i} \frac{\partial L}{\partial \dot{q}}$$
 is conserved

When the Lagrangian is quadratic in velocities the system is time-reversible

Fix
$$G = \{\dot{q} = 0\} = \{L(q, 0) = E\} \longrightarrow dim(Fix(G)) = N-1 \geqslant \frac{2N-S-2}{2}$$
 $E < max \ L(q, 0)$

 $\rightarrow dim(Fix(G)) = -1$ E > max L(q,0)

(symmetries may change the count)

ATTRACTOR - REPELLER MERGER

Chaplygin ball (rubber body) dynamics for different energies (by A.Kazakov)

Suslov model

Attractor and Repeller by A. Kazakov

Heteroclinic cycles in non-dissipative (e.g. reversible) maps lead to solenoids

Solenoid

Can Bonatti-Diaz blenders produce periodic spots?

(by C^r -small perturbation, r > 1)

Taking dissipation into account:

Smooth rocks may roll on a surface in a peculiar chaotic regime (reversible core), which is an attractor and a repeller at the same time, and the complexity of fine details of this motion may (possibly) exceed everything