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Signal

Consider the following map on Hilbert space
(
H, 〈·, ·〉, | · |

)
:

Signal Dynamics

vj+1 = Ψ(vj), v0 ∼ µ0.

Assume dissipativity:

Absorbing Set

Compact B in H with the property that, for |v0| ≤ R, there is
J = J(R) > 0 such that, for all j ≥ J, vj ∈ B.

Limited predictability:

Global Attractor

d(vj ,A)→ 0, as j →∞.
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Signal and Observation

Random initial condition:

Signal Process

vj+1 = Ψ(vj), v0 ∼ µ0.

Observations, partial and noisy, P : H → RJ :

Observation Process

yj+1 = Pvj+1 + εξj+1, Eξj = 0, E|ξj |2 = 1, i.i.d. w/pdf ρ.

Filter: probability distribution of vj given observations to time j :

Filter

µj(A) = P
(
vj ∈ A|Fj

)
, Fj = σ(y1, . . . , yj).
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Signal and Observation: Control Unpredictability?

Pushforward under dynamics:

Signal Process

µ̂j+1 = Ψ ? µj .

Incorporate observations via Bayes’ Theorem:

Observation Process

µj+1(A) =

∫
A ρ
(
ε−1(yj+1 − Pv)

)
µ̂j+1(dv)∫

H ρ
(
ε−1(yj+1 − Pv)

)
µ̂j+1(dv)

.

When is the filter predictable:

Filter Accuracy

µj ≈ δv†j as j →∞.
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Goal (Cerou [5], SIAM J. Cont. Opt. 2000)

Key Question: For which Ψ and P does the filter µj

concentrate on the true signal, up to error ε, in the
large-time limit?

Key Problem: Ψ may expand

View P as a projection on H. Define Q = I − P.

Key Idea: QΨ should contract
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A Large Class of Examples

Geophysical Applications

dv

dt
+ Au + B(u, u) = f .

Dissipative with energy conserving nonlinearity

∃λ > 0 : 〈Av , v〉 ≥ λ|v |2.

〈B(v , v), v〉 = 0.

f ∈ L2
loc(R+;H).

Examples

Lorenz ’63
Lorenz ’96
Incompressible 2D Navier-Stokes equation on a torus
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Filter
Accuracy

Dynamical
Systems

Data Assimilation Probability

Synchronization

Dissipative
Systems

3DVAR

Weather
Prediction

Filter Optimal

Conditioning:
Galerkin
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Idea 1: Synchronization (Foias and Prodi [7], RSM Padova 1967 Pecora and Carroll [13], PRL 1990.)

Truth v † = (p†, q†) Synchronization Filter m = (p, q)

p†j+1 = PΨ(p†j , q
†
j ), pj+1 = p†j+1,

q†j+1 = QΨ(p†j , q
†
j ), qj+1 = QΨ(p†j , qj);

−−− −−−

v †j+1 = Ψ(v †j ), mj+1 = QΨ(mj) + p†j+1.

Synchronization for various chaotic dynamical systems (including
the three canonical examples above [8, 13, 4, 14]):

|mj − v †j | → 0, as j →∞.
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Idea 2: 3DVAR (Lorenc [12] Q. J. R. Met. Soc 1986)

Cycled 3DVAR Filter. | · |A = |A−
1
2 · |.

mj+1 = argminm∈H{|m −Ψ(mj)|2C + ε−2|yj+1 − Pm|2Γ}.

Solve Variational Equations (with C = ε2
(
η−2ΓP + Q))

mj+1 = (I − K )Ψ(mj) + Kyj+1, K = (1 + η2)−1P,

Variance Inflation (from weather prediction) η � 1

mj+1 = QΨ(mj) + Pyj+1, η = 0. Synchronization Filter.



INTRODUCTION THREE IDEAS DISCRETE TIME: THEORY CONTINUOUS TIME: DIFFUSION LIMITS CONCLUSIONS

Inaccurate: η too large. (NSE torus) Law and S [10], Monthly Weather Review, 2012
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Accurate: smaller η. (NSE torus) Law and S [10], Monthly Weather Review, 2012
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Idea 3: Filter Optimality (Folklore, but see e.g. Williams · · · )

Recall Fj = σ(y1, . . . , yj) and define the mean of the filter:

v̂j := E(vj |Fj) = Eµj (vj).

Use Galerkin orthogonality wrt conditional expectation

For any Fj measurable mj :

E|vj − v̂j |2 ≤ E|vj −mj |2.

Take mj from 3DVAR to get bounds on the mean of the filter.
Similar bounds apply to the variance of the filter. (Not shown.)
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Assumptions

There are two equivalent Hilbert spaces:(
H, 〈·, ·〉, | · |

)
and

(
V, 〈·, ·〉V , ‖ · ‖

)
:

Assumption 1: Absorbing Ball Property

There is R0 > 0 such that:

for B(R0) := {x ∈ H : |x | ≤ R0}, Ψ(B(R0)) ⊂ B(R0);

for any bounded set S ⊂ H ∃J = J(S) : ΨJ(S) ⊂ B(R0).

Assumption 2: Squeezing Property

There is α(R0) ∈ (0, 1) such that, for all u, v ∈ B(R0),

‖Q(Ψ(u)−Ψ(v))‖2 ≤ α(R0)‖u − v‖2.
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Theorem (Sanz-Alonso and S, 2014, [15])

Let Assumptions 1,2 hold. Then there is a constant c > 0
independent of the noise strength ε such that

lim sup
j→∞

E|vj − v̂j |2 ≤ cε2

.

Idea of proof:

Fix m0 ∈ B(R0) and let P denote the H−projection onto
B(R0). Define the modified 3DVAR:

mj+1 = P
(
QΨ(mj) + yj+1

)
.

Prove
lim sup
j→∞

E|vj −mj |2 ≤ cε2.

Use the L2 optimality of the filtering distribution.
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Idea of proof (sketch, Ψ globally Lipschitz):

mj+1 = QΨ(mj) +

yj+1︷ ︸︸ ︷
PΨ(vj) + εξj+1,

vj+1 = QΨ(vj) +PΨ(vj).

Subtract and use independence plus contractivity of QΨ:

E‖vj+1 −mj+1‖2 = E‖Q (Ψ(vj)−Ψ(mj))− εξj+1‖2

≤ E‖Q (Ψ(vj)−Ψ(mj)) ‖2 + ε2E‖ξj+1‖2

≤ αE‖vj −mj‖2 + ε2E‖ξj+1‖2.

Use Gronwall.
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Lorenz ’63 (uses noiseless synchronization filter analysis in Hayden, Olson and Titi [8], Physica D 2011.)

dv (1)

dt
+ a(v (1) − v (2)) = 0

dv (2)

dt
+ av (1) + v (2) + v (1)v (3) = 0

dv (3)

dt︸ ︷︷ ︸
dv
dt

+ bv (3)︸ ︷︷ ︸
Av

− v (1)v (2)︸ ︷︷ ︸
B(v, v)

= − b(r + a)︸ ︷︷ ︸
f

Observation matrix

P :=

 1 0 0
0 0 0
0 0 0

 .

Theory applicable with ‖ · ‖2 := |P · |2 + | · |2 for h sufficiently
small: [8], [11].
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Lorenz ’96 (Law, Sanz-Alonso, Shukla and S [14], arXiv 2014.)

Consider the following system, subject to the periodicity boundary
conditions v0 = v3J , v−1 = v3J−1, v3J+1 = v1:

dv (j)

dt︸ ︷︷ ︸
dv
dt

+ v (j)︸︷︷︸
Av

+ v (j−1)(v (j+1) − v (j−2))︸ ︷︷ ︸
B(v, v)

= F︸︷︷︸
f

, j = 1, 2, . . . , 3J.

Observation matrix P: observe 2 out of every 3 points. Theory
applicable with ‖ · ‖2 := |P · |2 + | · |2 for h sufficiently small: [14].
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2D Navier-Stokes Equation (again uses analysis in Hayden, Olson and Titi [8], Physica D 2011.)

Pleray denotes the Leray projector:

Au = −νPleray∆u, B(u, v) =
1

2
Pleray[u ·∇v ] +

1

2
Pleray[v ·∇u].

Observation operator in (divergence-free) Fourier space:

Pu =
∑

|k|≤kmax

uk
k⊥

|k |
e ik·x .

Theory applicable with H = V := H1
div(T2) and kmax sufficiently

large/h sufficiently small: [3], [8].
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Summary of Examples

Observations control unpredictability in these cases:

ODE Dimension of v Rank(P)

Lorenz ’63 3 1

Lorenz ’96 3J 2J

NSE on torus ∞ Finite
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Generalize 3DVAR: The EnKF. Evensen [6] Journal of Geophysical Research 1994.

Ensemble Kalman Filter. For n = 1, . . . ,N:

v
(n)
j+1 = argminv∈H{|v −Ψ(v

(n)
j )|2Cj

+ ε−2|y (n)
j+1 − Pv |2Γ}.

Empirical Covariance

v̄j =
1

N

N∑
n=1

v
(n)
j , Cj =

1

N

N∑
n=1

(
v

(n)
j − v̄j

)
⊗
(
v

(n)
j − v̄j

)
.

Perturbed Observations

y
(n)
j+1 = yj+1 + εξ

(n)
j , ξ

(n)
j i.i.d. w/pdf ρ.
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S(P)DE Limits with Brett et al [3], Blömker et al 2012 [2], Kelly et al 2014 [9]

High Frequency Data Limit – 3DVAR

dm

dt
+ Am + B(m,m) + CP∗Γ−1

(
P(m − v) + εΓ

1
2
dW

dt

)
= f

High Frequency Data Limit – Ensemble Kalman Filter

dv (n)

dt
+Av (n)+B(v (n), v (n))+CP∗Γ−1

(
P(v (n)−v)+εΓ

1
2
dW (n)

dt

)
= f ,

v =
1

J

J∑
j=1

v (n), C =
1

J

J∑
j=1

(v (n) − v)⊗ (v (n) − v).
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S(P)DE Accuracy see also Azouani, Olson and Titi 2014 [1] and Tong, Majda, Kelly 2015 [16] .

Theorem (3DVAR Accurate, with Blömker 2012 et al [2])

Under similar assumptions to the discete case there is a constant
c > 0 independent of the noise strength ε such that

lim sup
t→∞

E|v −m|2 ≤ cε2

.

Theorem (EnKF Well-Posed, with Kelly et al [9])

Let Assumptions 1 hold and P=I. Then there is a constant c > 0
independent of the noise strength ε such that

sup
t∈[0,T ]

N∑
n=1

E|v (n)(t)|2 ≤ C (T )
(
1 + E|v (n)(0)|2).
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SPDE Inaccurate (NSE Torus) (Blömker et al [2])
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SPDE Accurate (NSE Torus) (Blömker et al [2])
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Summary

Chaos – and resulting unpredictability – is the enemy in
many scientific and engineering applications.

Its study has led to a great deal of interesting mathematics
over the last century.

Data – when combined with models – can have a massive
positive impact on prediction in all of these scientific and
engineering applications.

The emerging new field, in which model and data are
analyzed simultaneously, will lead to interesting new
mathematics over the next century.

Data Assimilation needs input from Dynamical Systems.
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positive impact on prediction in all of these scientific and
engineering applications.

The emerging new field, in which model and data are
analyzed simultaneously, will lead to interesting new
mathematics over the next century.

Data Assimilation needs input from Dynamical Systems.
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