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Signal

Consider the following map on Hilbert space (H, (-,-), |- |):

Signal Dynamics

virr = V(v), v~ po.

Assume dissipativity:

Absorbing Set

Compact B in H with the property that, for |vg| < R, there is
J = J(R) > 0 such that, for all j > J, v; € B.

Limited predictability:

Global Attractor

d(vj, A) =0, as j — oo.
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Signal and Observation

Random initial condition:

Signal Process

vier = V(v),  vo~ po.

Observations, partial and noisy, P : H — R”:

Observation Process

Vi1 = Pviy1 + €1,  E& =0, E|§2 =1, iid. w/pdfp.

Filter: probability distribution of v; given observations to time j:
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Signal and Observation: Control Unpredictability?

Pushforward under dynamics:

Signal Process

Hjs1 =V pj.

Incorporate observations via Bayes' Theorem:

Observation Process

fA P( (Vi1 — PV))ﬁjJrl(dV)
fH P( (y_l—i-l - PV))ﬁjH(dv).

When is the filter predictable:

j+1(A) =

Filter Accuracy

Mj%évj-r as j — oo.
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INTRODUCTION

Goal (Cerou [5], SIAM J. Cont. Opt. 2000)

Key Question: For which ¥V and P does the filter ;/
concentrate on the true signal, up to error ¢, in the
large-time limit?

Key Problem: ¥V may expand )

View P as a projection on H. Define Q =/ — P.

Key Idea: QV should contract ]




INTRODUCTION

A Large Class of Examples

Geophysical Applications

ﬂ—l—Au—FB(u,u):f.

dt

e I\ >0: (Av,v) > A|v|%.
e (B(v,v),v)=0.
o fel2 (R H).

loc

Examples
Lorenz '63
Lorenz '96
Incompressible 2D Navier-Stokes equation on a torus
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Idea 1 SynCh ron Izatlon (Foias and Prodi [7], RSM Padova 1967 Pecora and Carroll [13], PRL 1990.)

Synchronization Filter m = (p, q)

p}-Jrl = P\U(pja qj): Pj+1 = p}-Jrl’
ql.1 = QU(p},q)), gj+1 = QU(pf, q));

vl = (), mjs1 = QU(m) + pl, ;.




THREE IDEAS

Idea 1 SynCh ron |Zat|on (Foias and Prodi [7], RSM Padova 1967 Pecora and Carroll [13], PRL 1990.)

Synchronization Filter m = (p, q)

p}-Jrl = P\U(pja qj): Pj+1 = p}-Jrl?
ql.1 = QU(p},q)), gj+1 = QU(pf, q));

v =w(v) mjp1 = QU(mj) + p!
Vit1 i )s j+1 j) T Pjy1-

Synchronization for various chaotic dynamical systems (including

the three canonical examples above [8, 13, 4, 14]):

m; — vl — 0, as j — o0.
J J J
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Idea 2 3DVAR (Lorenc [12] Q. J. R. Met. Soc 1986)

Cycled 3DVAR Filter. |- |4 =|A"2 - |.

my1 = argmin ey {|m — W(m)[% + ¢ 2ly;1 — Pmi?).

Solve Variational Equations (with C = €?(n™2I'P + Q))

mic1 = (I — K)W(m;) + Kyj1, K =(1+n2)7tP,

Variance Inflation (from weather prediction) n < 1

mjy1 = QV(m;) + Pyj11, n=0. Synchronization Filter.
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InaCCU I'ate 77 tOO Ial’ge (NS E tOI’US) Law and S [10], Monthly Weather Review, 2012

3DVAR,v=0.01, h=0.2 3DVAR,v=0.01, h=0.2, Re(u1 2)
0.3 —m
_________________________________ —u*
10° 0.2 A
—__lIm@)-u" eI -l
0.1 M e
---tr(r)
= . | * 0 e
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ACCU rate Sma | |e|’ 77 (NSE tOI’US) Law and S [10], Monthly Weather Review, 2012

[3DVAR],v=0.01, h=0.2 [3DVAR],v=0.01, h=0.2, Re(u, ,)

__lIm)-u* (eI

-=-tr(r)
10° ___t[(-B)r(-B )]

207 e e

step
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Idea 3 Fl Iter Optima | |ty (Folklore, but see e.g. Williams - - -)

Recall Fj = o(y1 y;j) and define the mean of the filter:

Ui = E(vj| Fj) = BN (v;).

Use Galerkin orthogonality wrt conditional expectation

For any F; measurable mj :

Elv; — 4* < Elv; — mj|?.

Take m; from 3DVAR to get bounds on the mean of the filter.
Similar bounds apply to the variance of the filter. (Not shown.)
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DISCRETE TIME: THEORY

Assumptions

There are two equivalent Hilbert spaces:

(H, ¢l 1) and (Vs Cyvs Il 1)
Assumption 1: Absorbing Ball Property

There is Ry > 0 such that:
e for B(Ry) :={x € H : |x| < Ro}, ¥(B(Ro)) C B(Ro);
o for any bounded set S C H 3J = J(S) : W/(S) C B(Ro).

v

Assumption 2: Squeezing Property

There is a(Rp) € (0,1) such that, for all u,v € B(Rp),

1Q(W(u) — W(v))II* < a(Ro)||u — v|.

A\
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Theorem (Sanz-Alonso and S, 2014, [15])

Let Assumptions 1,2 hold. Then there is a constant ¢ > 0
independent of the noise strength € such that

: 512 2
limsup E[v; — ;|° < ce
J—00

Idea of proof:

e Fix mg € B(Rp) and let P denote the H—projection onto
B(Rop). Define the modified 3DVAR:

mjy; = P(Q\U(mj) + }/J'+1).
@ Prove

- 2 2
limsup E[v; — mj[* < ce”.
J—00

o Use the L? optimality of the filtering distribution.
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Idea of proof (sketch, W globally Lipschitz):

Yj+1
——
mj11 = QV(m;) +PV(v;) + €1,
vir1 = QV(v)) +PV(v)).

Subtract and use independence plus contractivity of QW:

E[lvj1 — misa|? = ElQ (W(v) — W(m))) — e&ja|?
<E[Q(W(y) = W(my)) |* + €Ell&1 ]
< aEl|v; — mj[|* + €Ellg41 )%

Use Gronwall.
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'
I_OrenZ 63 (uses noiseless synchronization filter analysis in Hayden, Olson and Titi [8], Physica D 2011.)

+ av® 4@ 4 My® =g

Observation matrix

Theory applicable with || - ||? 2 for h sufficiently

small: [8], [11].
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I_OrenZ ,96 (Law, Sanz-Alonso, Shukla and S [14], arXiv 2014.)

Consider the following system, subject to the periodicity boundary
conditions vo = v3 ,v_1 = V31, V341 = Vi:

dcvfij) +v0) ¢ VU—l)(v(j'H) — v(j_z)) = F, j=12,...,3J
N ~—
dv Av B(v,v) f

Observation matrix P: observe 2 out of every 3 points. Theory
applicable with || - [|> :== |P - |2+ | - |? for h sufficiently small: [14].
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2D NaVier—StO keS Eq UatiOn (again uses analysis in Hayden, Olson and Titi [8], Physica D 2011.)

Pieray denotes the Leray projector:
1 1
Au = —VPigrayAu, B(u,v) = §Plemy[u-Vv] + EPleray[v‘Vu].

Observation operator in (divergence-free) Fourier space:
Kt
Pu = u——e"™x,
Z “Tk|
|k|§kmax

Theory applicable with H =V := H}, (T?) and kmax sufficiently
large/ h sufficiently small: [3], [8].
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Summary of Examples

Observations control unpredictability in these cases: ]

ODE Dimension of v | Rank(P)
Lorenz '63 3 1
Lorenz '96 3] 2]
NSE on torus s Finite
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CONTINUOUS TIME: DIFFUSION LIMITS

Genera I ize 3DVAR The En K F . Evensen [6] Journal of Geophysical Research 1994.

Ensemble Kalman Filter. For n=1,... N:

V{7 = argmin, gy {|v — W + 2y — PV},

Empirical Covariance
N
LS (47 - )e (47 - ).

<!
I
=~
=
K<
2\

N

Perturbed Observations

)/J(i)l = Yj+1+ 65}”)’ §J§n) ii.d. w/pdf p.
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S(P) DE Ll m ItS with Brett et al [3], Blomker et al 2012 [2], Kelly et al 2014 [9]

High Frequency Data Limit — 3DVAR

dm

dt

+ Am + B(m, m) + CP*r—l(P(m — V) fel2 dg) = f
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S(P) DE Ll m |tS with Brett et al [3], Blomker et al 2012 [2], Kelly et al 2014 [9]

High Frequency Data Limit — 3DVAR

+ Am + B(m, m) + CP*r—l(P(m — V) fel2 d;f) = f

dm

dt

High Frequency Data Limit — Ensemble Kalman Filter

dv(m)
dt

()
+AVD L B(v(M My cprr—t (P(v(">—v)+er% dw )

J
V=230, c= I3 ne () )
j=1
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S(P) DE ACCU ra Cy see also Azouani, Olson and Titi 2014 [1] and Tong, Majda, Kelly 2015 [16] .

Theorem (3DVAR Accurate, with Blomker 2012 et al [2])

Under similar assumptions to the discete case there is a constant
¢ > 0 independent of the noise strength e such that

limsup E|lv — m|? < cé?
t—o0

N

Theorem (EnKF Well-Posed, with Kelly et al [9])

Let Assumptions 1 hold and P=I. Then there is a constant ¢ > 0
independent of the noise strength e such that

sup ZEI M) < (T)(L +EVDO)P).
te[0,T] .=
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SPDE Inaccurate (NSE Torus) (Blémker et al [2])
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SPDE Accurate (NSE Torus) (Blémker et al [2

— ImMo-uuel
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Summary

@ Chaos — and resulting unpredictability — is the enemy in
many scientific and engineering applications.

@ lts study has led to a great deal of interesting mathematics
over the last century.

@ Data — when combined with models — can have a massive
positive impact on prediction in all of these scientific and
engineering applications.

@ The emerging new field, in which model and data are
analyzed simultaneously, will lead to interesting new
mathematics over the next century.

o Data Assimilation needs input from Dynamical Systems.
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