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The electrically active cells are described by an action potential
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Solutions of Hodgkin-Huxley's model

B These models are accurate

m but very expensive/difficult to
neurones.
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and of FitzHugh-Nagumo's model
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The Wilson-Cowan model (1972) describes the firing rates N(x, t)
of neuron assemblies located at position x through an integral
equation

%N(x, t) = —N(x,t)+ / W(x,y)a(N(y, t))dy + s(x, t)

m o(-) = sigmoid
B w(x,y) = connectivity matrix
B s = source
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The Wilson-Cowan model (1972) describes the firing rates N(x, t)
of neuron assemblies located at position x through an integral
equation

%N(X, t) = —N(x,t)+ / W(X,y)U(N(y, t))dy + s(x, t)

m o(-) = sigmoid
B w(x,y) = connectivity matrix
B s = source

Can be seen as a generic model of network.
Not physiologically based
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The Wilson-Cowan model (1972) describes the firing rates N(t, x)
of neuron assemblies located at position x through an integral
equation

d

SNt = <NGx 1)+ [ wxoy)o (NG, ) dy -+ st 1
Feature : multiple steady states and bifurcation theory
(Bressloff-Golubitsky, Chossat-Faugeras-Faye)

Aim : large scale brain activity, visual hallucinations (Kliiver, Oster,
Siegel...)




OUTLINE OF THE LECTURE

Generic goal : understand physiologically based models of neural
networks.

I. Principle of Noisy Integrate and Fire model
Il. The nonlinear Noisy Integrate and Fire model
I1l. The voltage-conductance kinetic system for integrate&fire

IV. The elapsed time approach



Leaky Integrate and Fire Jil

The Leaky Integrate & Fire model is simpler
dV(t) = (= V(t) + I(t))dt + odW(t), V(t) < Vriring
V(t-) = Vriring == V(1) = Vieset
The idea was introduced by L. Lapicque (1907)
m /(t) input current
m Noise or not

B Stochastic firing

® Much simpler that Hodgkin-Huxley/FitzHugh-Nagumo models



Leaky Integrate and Fire Jil
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Solution to the LIF model

m N. Brunel and V. Hakim, R. Brette, W. Gerstner and W. Kistler,
Omurtag, Knight and Sirovich, Cai and Tao...

m Fit to measurements

B Explains quantitatively observations on the brain activity



Leaky Integrate and Fire
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From C. Rossant et al, Frontiers in Neuroscience (2011)




Leaky Integrate and Fire Jil

Open question :

Derive rigorously the Integrate and Fire model from the FHN
system.




Leaky Integrate and Fire

The probability n(v, t) to find a neuron at the potential v solves
the Fokker-Planck Eq. for v < Vg

Noise
leak-+external currents ,_/ﬁ neurons reset
on(v . 22n(v,t) ——————
n( A 4 c’)v [( v+ I(t ))n(v t)] T = N(t) o(v = Vg),

n(Ve,t) =0, n(—oo,t) =0,

N(t) = —aw >0, (the total flux of neurons firing at V).



Leaky Integrate and Fire Jil

The probability n(v, t) to find a neuron at the potential v solves
the Fokker-Planck Eq. for v < Vg

leak+external currents /—NSiS; neurons reset
only -~ 2n(v,t) ——
o6+ 2 (— v+ () n(v, B)] - —a(v2 ) N o = Vi),
n(Vg,t) =0, n(—oo, t) =0,
L on(VEg,t) L.
N(t) := —a==5~ >0, (the total flux of neurons firing at V).

N(t) is also a Lagrange multiplier for the constraint

Ve
/ n(v, t)dv = 1.



Leaky Integrate and Fire

00 4 2 [(— v+ 1(8))n(v, 1)] — a8 = N(£) 3(v = Vi),
n(Vth) =0, n(—oo, t) =0

N(t) := — a”(VF’t) >0, (the total flux of firing neurons at V).

Properties (Caceres, Carrillo, BP) For /(t) = 0 the solutions
satisfy

mn>0, [V n(v,t)dv =1,

m n(v,t) — P(v) the unique steady state (probability density)

t—o0

B The convergence rate is exponential

Conclusion Total desynchronization



Leaky Integrate and Fire

The proof uses

m the Relative Entropy. For H(-) convex,

d [VF n(v,t)
dt | (V)H( P(v)

)dv <0,

m Hardy/Poincaré inequality,

Ve Ve
/_ P(v)|u(v)|2dv < C/ P(v)|Vu(v)|2dv,

(e} —00

Ve
when /_ P(v)u(v)dv =0, P(VF)=0

o0

See : Ledoux, Barthe and Roberto

JiL



Noisy LIF networks Jil

For networks, the current /(t) = bN(t) is related to the network
activity

net) 1O [(— vbN(E))n(v, £)] — a(N(£) 225D = N(t) Sy, (v),

n(Ve,t) =0, n(—oo,t) =0,

N(t) == —a(N(t))%n(VF, t) >0, total flux of firing neurons at V¢
Constitutive laws

M b = connectivity

B b > 0 for excitatory neurones B b < 0O for inhibitory
neurones

| a(N) =ap+ a1



Noisy LIF networks

n(vit) 4 D [(— v+bN(E))n(v, )] — a(N(£)) 2D — N(t) Sy (v),
n(Ve,t) =0, n(—oo,t) =0,

N(t) := —a(N(t))%n(VF, t) >0, total flux of firing neurons at Vg

Can be derived from a large system of N interacting neurons, see
Delarue, Inglis, Rubenthaler, Tanre : for 1 << N

,8 N
Vi) ==Vi(t) + N; Eé(t—n)JradW;(t), Vi(t) < VE,

with 7; the spiking times V;(7;) = VF.



Noisy LIF networks Jil

Theorem (J. Carrillo, D. Salort, BP, D. Smets)[inhibitory]
Assume

B a=3p>0and b <0 (inhibitory)

m the initial data is bounded by a supersolution (in a certain sense)

Then,

B There are global solutions

m Uniformly bounded for all t > 0

Open question Large time convergence to the unique steady state

See also Carrillo,Gonzalés, Gualdani, Schoenbeck for a reduction to
Stefan problem



Noisy LIF networks Jil

Proof Two ingredients :
1. A universal supersolution (whatever is N(t))
NP

Al =A"eF

2. For the Fokker-Planck equation, regularizing effects L1 — L



Noisy LIF networks Jil

8n(v t) + 8‘/ [( _ v+bN(t)) n(v, )] ( (t))a n(vt) _ N(t) dv,(v),

n(Vg,t) =0, n(—oo, t) =0, N(t) := —a(N(t ))82 (VE, t) >

S S0 4s 4o a0 48 oo os 1o E-) R R R R
Inhibitory case b < 0. Left p(v,t), Right : N(t)
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Noisy LIF networks

Theorem (M. Caceres, J. Carrillo, BP) [excitatory, blow-up]
Assume a > ag > 0 and b > 0. Then the solution blows-up in finite
time in the two cases

M the initial data is concentrated enough around v = V¢
(depending on b)

M initial data is given, b is large enough

Surprisingly
® Noise does not help

m value of b does not count



Noisy LIF networks Jil

Theorem (M. Caceres, J. Carrillo, BP) [excitatory, blow-up]
Assume a > ag > 0 and b > 0. Then the solution blows-up in finite
time in the two cases

M the initial data is concentrated enough around v = V¢
(depending on b)

M initial data is given, b is large enough

Possible interpretation
m N(t) — pd(t — tgy) and tpy > 0,

m partial synchronization (S. Ha, Dumont-Henry, Giacomin,
Pakdaman)



Noisy LIF networks Jil

H Noise does not help

Theorem (J. Carrillo, D. Salort, BP, D. Smets)[inhibitory]
Assume a = ag + a1 N and b < 0.

Then the solution blows-up in finite time when the initial data is
concentrated enough around v = Vg



Noisy LIF networks Jil

Theorem (J. Carrillo, D. Salort, BP, D. Smets) [excitatory,
existence]

Assume a > ag > 0 and b > 0. Being given the initial data
| for b small enough, there is a solution

M it converges to the steady state



Noisy LIF networks

JiL

w3

300
Excitatory integrate and fire model. Blow-up case. Left p(v, t), Right : N(t)
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Noisy LIF with refractory state

n(vit) 4 D [(— vbN(E))n(v, £)] — a(N(t)) Zalet) — RO 5, (),
n(Ve, t) =0, n(—oo,t) =0
N(t) == —a(N(t)) Zn(Ve, t) >0

%R(t) + @ = N(t). Refractory state

(See also Brunel for other versions)

Theorem (M.Caceres, BP) [Refractory]

The solution blows-up in finite time in the 2 cases :

B b > 0 is fixed, if the initial data is concentrated enough around
VE.
B The initial data is given, if b large enough



Noisy LIF with refractory state Jil

Proof. For pu = 2max(#, ,TF) define

d(v)=e",  Mu(t):= [F o(v)n(v,1).

For smooth solutions, we prove that M, (t) becomes larger than
eILLVF

My [ (o) — v+ 12) o)l 8) — MO VE) + Z (Vi)
dt _ T

e}

> N(t) [buMu(t) — 6(Ve)] + a0 — Vie] Mu(t)

v\ > NT/rF >0
> 0 is needed only initially
OK for b large enough or M,(0) large enough
To go further : the difficulty : no relation between M,, and N




Noisy LIF with refractory state

Jit
Open question : coupling an inhibitory and excitatory network.



Spontaneous activity (regularized) JiL

Assume refractory state and that the firing potential Vf is random.
on(v 8n(v, n(v,
( t) 4 6‘/ [(— v+bN(t))n(v, t)] - a(N(t))TE/rt)—i- %][{va}
- @6%?(‘/)7

N(t‘) = —/ n(v t) ][{v>VF}dV

%R(t) + @ = N(t). Refractory state

Solutions are globally bounded.



Spontaneous activity (regularized)
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Left : Excitatory integrate and fire model with refractory state and random firing threshold

Right : Conhaim et al (2011) J. of physiology 589(10) 2529-2541.
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Voltage-conductance 1&F Jil

From J. Malmivuo and R. Plonsey, Principles and

Appl. of bioelectric and biomagnetic fields, OUP
1995

0
ap(\/?ga t) + -

lon channels lead to ODE models a /a Hodgkin-Huxley
0
ov

[(—gv+g(Ve—v))p(v.g.t)]

_ a 2
+%[%Egp(v7g, ) - 2.2

p— agzp(v,g, t) =0,
v e (07 VF)7 g = 07

Cai, Shelley, McLaughlin, Rangan, Kovacic, Ly, Trnachina...
Sub-elliptic fluxes




Voltage-conductance 1&F Jil

From J. Malmivuo and R. Plonsey, Principles and

Appl. of bioelectric and biomagnetic fields, OUP
1995

lon channels lead to ODE models a /a Hodgkin-Huxley
0

O (v 0+ 2 [(— g0y +8(Ve — v)p(v.8. )
_ a 2
+%[%Egp(v,g, py) - 280

= 8gzp(v,g, ) =0,
v e (07 VF)7 g207
Theorem (D. Salort, BP)

. . 8-
m Stationary solutions belong to L7

m Evolution solutions are globally bounded in LP (no blow-up)



Elapsed time structured model Jil

NI
Lot e

100 ms
Based on K. Pakdaman, J. Champagnat, J.-F. Vibert

M s represents the time elapsed since the last discharge

® n(s, t) probability of finding a neuron in 'state’ s at time t

m N(t) = activity of the network

elapsed time advances
firing neurons
N

In(s, 1)
n(s n(s,t - \
T AT (s bN(D) (s, 1) =0,

+o00
N(t):=n(s=0,t) = /0 r(s, bN(t)) n(s, t)ds,

Vv
neurons reset




Elapsed time structured model Jil

elapsed time advances
firing neurons

+7(5.BN(8)) n(s. ) = 0,

——
on(st) on(s, t)

ot Os
+o0
N(t) = n(s = 0,¢) = /O H(s, BN(£)) n(s, t)ds,

. 2

neurons reset
P4

M P
Pacemaker

NS W N W v

t Septum
l\ Pacemaker

M N

Right : Conhaim et al (2011) J. of physiology 589(10) 2529-2541.
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Noisy LIF networks : CONCLUSION JiL

H For the Noisy LIF model synchronization arises as a singularity of
the total activity of the network

B But there are regimen with smooth solutions and total
desynchronization

B Open problems W coupled inhibitory/excitatory

B convergence to a steady
state (inhibitory)

m Derivation of LIF models



Noisy LIF networks : CONCLUSION

THANKS TO MY COLLABORATORS
M. J. Carceres, J. A. Carrillo
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Noisy LIF networks : CONCLUSION
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