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Introduction

The electrically active cells are described by an action potential

Hodgkin-Huxley

FitzHugh-Nagumo

Morris-Lekar

Mitchell-Schaeffer



Introduction

Solutions of Hodgkin-Huxley’s model and of FitzHugh-Nagumo’s model

These models are accurate

but very expensive/difficult to use for large assemblies of
neurones.



Introduction

The Wilson-Cowan model (1972) describes the firing rates N(x , t)
of neuron assemblies located at position x through an integral
equation

d

dt
N(x , t) = −N(x , t) +

∫
w(x , y)σ

(
N(y , t)

)
dy + s(x , t)

σ(·) = sigmoid
w(x , y) = connectivity matrix
s = source

Can be seen as a generic model of network.
Not physiologically based

Feature : multiple steady states and bifurcation theory

(Bressloff-Golubitsky, Chossat-Faugeras-Faye)
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Introduction

The Wilson-Cowan model (1972) describes the firing rates N(t, x)
of neuron assemblies located at position x through an integral
equation

d

dt
N(x , t) = −N(x , t) +

∫
w(x , y)σ

(
N(y , t)

)
dy + s(x , t)

Feature : multiple steady states and bifurcation theory

(Bressloff-Golubitsky, Chossat-Faugeras-Faye)

Aim : large scale brain activity, visual hallucinations (Klüver, Oster,

Siegel...)

.



OUTLINE OF THE LECTURE

Generic goal : understand physiologically based models of neural
networks.

I. Principle of Noisy Integrate and Fire model

II. The nonlinear Noisy Integrate and Fire model

III. The voltage-conductance kinetic system for integrate&fire

IV. The elapsed time approach



Leaky Integrate and Fire

The Leaky Integrate & Fire model is simpler

dV (t) =
(
− V (t) + I (t)

)
dt + σdW (t), V (t) < VFiring

V (t−) = VFiring =⇒ V (t+) = Vreset

The idea was introduced by L. Lapicque (1907)

I (t) input current

Noise or not

Stochastic firing

Much simpler that Hodgkin-Huxley/FitzHugh-Nagumo models



Leaky Integrate and Fire
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Solution to the LIF model

N. Brunel and V. Hakim, R. Brette, W. Gerstner and W. Kistler,
Omurtag, Knight and Sirovich, Cai and Tao...

Fit to measurements

Explains quantitatively observations on the brain activity



Leaky Integrate and Fire

From C. Rossant et al, Frontiers in Neuroscience (2011)



Leaky Integrate and Fire

Open question :
Derive rigorously the Integrate and Fire model from the FHN
system.



Leaky Integrate and Fire

The probability n(v , t) to find a neuron at the potential v solves
the Fokker-Planck Eq. for v ≤ VF

∂n(v ,t)
∂t + ∂

∂v

leak+external currents︷ ︸︸ ︷[(
− v + I (t)

)
n(v , t)

]
−

Noise︷ ︸︸ ︷
a
∂2n(v , t)

∂v2
=

neurons reset︷ ︸︸ ︷
N(t) δ(v = VR),

n(VF , t) = 0, n(−∞, t) = 0,

N(t) := −a∂n(VF ,t)
∂v ≥ 0, (the total flux of neurons firing at VF ).
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∂n(v ,t)
∂t + ∂

∂v

leak+external currents︷ ︸︸ ︷[(
− v + I (t)

)
n(v , t)

]
−

Noise︷ ︸︸ ︷
a
∂2n(v , t)

∂v2
=

neurons reset︷ ︸︸ ︷
N(t) δ(v = VR),

n(VF , t) = 0, n(−∞, t) = 0,

N(t) := −a∂n(VF ,t)
∂v ≥ 0, (the total flux of neurons firing at VF ).

N(t) is also a Lagrange multiplier for the constraint∫ VF

−∞
n(v , t)dv = 1.



Leaky Integrate and Fire



∂n(v ,t)
∂t + ∂

∂v

[(
− v + I (t)

)
n(v , t)

]
− a∂

2n(v ,t)
∂v2 = N(t) δ(v = VR), v ≤ VF

n(VF , t) = 0, n(−∞, t) = 0

N(t) := −a∂n(VF ,t)
∂v ≥ 0, (the total flux of firing neurons at VF ).

Properties (Cáceres, Carrillo, BP) For I (t) ≡ 0 the solutions
satisfy

n ≥ 0,
∫ VF

−∞ n(v , t)dv = 1,

n(v , t) −→
t→∞

P(v) the unique steady state (probability density)

The convergence rate is exponential

Conclusion Total desynchronization



Leaky Integrate and Fire

The proof uses

the Relative Entropy. For H(·) convex,

d

dt

∫ VF

−∞
P(v)H

(n(v , t)

P(v)

)
dv ≤ 0,

Hardy/Poincaré inequality,∫ VF

−∞
P(v)|u(v)|2dv ≤ C

∫ VF

−∞
P(v)|∇u(v)|2dv ,

when

∫ VF

−∞
P(v)u(v)dv = 0, P(VF ) = 0

See : Ledoux, Barthe and Roberto



Noisy LIF networks

For networks, the current I (t) = bN(t) is related to the network
activity

∂n(v ,t)
∂t + ∂

∂v

[(
− v+bN(t)

)
n(v , t)

]
− a
(
N(t)

)∂2n(v ,t)
∂v2 = N(t) δVR

(v), v ≤ VF ,

n(VF , t) = 0, n(−∞, t) = 0,

N(t) := −a
(
N(t)

)
∂
∂v n(VF , t) ≥ 0, total flux of firing neurons at VF .

Constitutive laws

b = connectivity

b > 0 for excitatory neurones b < 0 for inhibitory
neurones

a(N) = a0 + a1N



Noisy LIF networks



∂n(v ,t)
∂t + ∂

∂v

[(
− v+bN(t)

)
n(v , t)

]
− a
(
N(t)

)∂2n(v ,t)
∂v2 = N(t) δVR

(v), v ≤ VF ,

n(VF , t) = 0, n(−∞, t) = 0,

N(t) := −a
(
N(t)

)
∂
∂v n(VF , t) ≥ 0, total flux of firing neurons at VF .

Can be derived from a large system of N interacting neurons, see
Delarue, Inglis, Rubenthaler, Tanre : for 1 ≤ i ≤ N

d

dt
Vi (t) = −Vi (t) +

β

N

N∑
j=1

∑
τj

δ(t − τj) + σdWi (t), Vi (t) < VF ,

with τj the spiking times Vj(τj) = VF .



Noisy LIF networks

Theorem (J. Carrillo, D. Salort, BP, D. Smets)[inhibitory]
Assume

a = a0 > 0 and b < 0 (inhibitory)

the initial data is bounded by a supersolution (in a certain sense)

Then,

There are global solutions

Uniformly bounded for all t > 0

Open question Large time convergence to the unique steady state

See also Carrillo,Gonzalés, Gualdani, Schoenbeck for a reduction to
Stefan problem



Noisy LIF networks

Proof Two ingredients :
1. A universal supersolution (whatever is N(t))

2. For the Fokker-Planck equation, regularizing effects L1 → L∞



Noisy LIF networks
∂n(v ,t)
∂t + ∂

∂v

[(
− v+bN(t)

)
n(v , t)

]
− a
(
N(t)

)∂2n(v ,t)
∂v2 = N(t) δVR

(v), v ≤ VF ,

n(VF , t) = 0, n(−∞, t) = 0, N(t) := −a
(
N(t)

)
∂
∂v n(VF , t) ≥ 0
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Noisy LIF networks

Theorem (M. Cáceres, J. Carrillo, BP) [excitatory, blow-up]
Assume a ≥ a0 > 0 and b > 0. Then the solution blows-up in finite
time in the two cases

the initial data is concentrated enough around v = VF

(depending on b)

initial data is given, b is large enough

Surprisingly

Noise does not help

value of b does not count



Noisy LIF networks

Theorem (M. Cáceres, J. Carrillo, BP) [excitatory, blow-up]
Assume a ≥ a0 > 0 and b > 0. Then the solution blows-up in finite
time in the two cases

the initial data is concentrated enough around v = VF

(depending on b)

initial data is given, b is large enough

Possible interpretation

N(t)→ ρδ(t − tBU) and tBU > 0,

partial synchronization (S. Ha, Dumont-Henry, Giacomin,
Pakdaman)



Noisy LIF networks

Noise does not help

Theorem (J. Carrillo, D. Salort, BP, D. Smets)[inhibitory]
Assume a = a0 + a1N and b < 0.
Then the solution blows-up in finite time when the initial data is
concentrated enough around v = VF



Noisy LIF networks

Theorem (J. Carrillo, D. Salort, BP, D. Smets) [excitatory,
existence]

Assume a ≥ a0 > 0 and b > 0. Being given the initial data

for b small enough, there is a solution

it converges to the steady state



Noisy LIF networks
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Noisy LIF with refractory state



∂n(v ,t)
∂t + ∂

∂v

[(
− v+bN(t)

)
n(v , t)

]
− a
(
N(t)

)∂2n(v ,t)
∂v2 = R(t)

τ δVR
(v), v ≤ VF

n(VF , t) = 0, n(−∞, t) = 0

N(t) := −a
(
N(t)

)
∂
∂v n(VF , t) ≥ 0

d
dtR(t) + R(t)

τ = N(t). Refractory state

(See also Brunel for other versions)

Theorem (M.Cáceres, BP) [Refractory]

The solution blows-up in finite time in the 2 cases :

b > 0 is fixed, if the initial data is concentrated enough around
VF .

The initial data is given, if b large enough



Noisy LIF with refractory state

Proof. For µ = 2 max( 1
b ,

VF
a0

), define

φ(v) = eµv , Mµ(t) :=
∫ VF

−∞ φ(v)n(v , t).

For smooth solutions, we prove that Mµ(t) becomes larger than
eµVF

dMµ

dt
= µ

∫ VF

−∞

(
bN(t)− v + µa

)
φ(v)p(v , t)− N(t)φ(VF ) +

R(t)

τ
φ(VR)

≥ N(t)
[
bµMµ(t)− φ(VF )

]︸ ︷︷ ︸+µ
[
µa0 − VF

]︸ ︷︷ ︸
≥ µVF >0

Mµ(t)

↘
> 0 is needed only initially

OK for b large enough or Mµ(0) large enough
To go further : the difficulty : no relation between Mµ and N



Noisy LIF with refractory state

Open question : coupling an inhibitory and excitatory network.



Spontaneous activity (regularized)

Assume refractory state and that the firing potential VF is random.

∂n(v ,t)
∂t + ∂

∂v

[(
− v+bN(t)

)
n(v , t)

]
− a
(
N(t)

)∂2n(v ,t)
∂v2 + n(v ,t)

ε 1I{v>VF }

= R(t)
τ δVR

(v),
N(t) := −

∫
n(v , t)

ε
1I{v>VF }dv

d
dtR(t) + R(t)

τ = N(t). Refractory state

Solutions are globally bounded.



Spontaneous activity (regularized)
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Left : Excitatory integrate and fire model with refractory state and random firing threshold

Right : Conhaim et al (2011) J. of physiology 589(10) 2529-2541.
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Voltage-conductance I&F

From J. Malmivuo and R. Plonsey, Principles and

Appl. of bioelectric and biomagnetic fields, OUP

1995

Ion channels lead to ODE models à la Hodgkin-Huxley

∂

∂t
p(v , g , t) +

∂

∂v

[(
− gLv + g(VE − v)

)
p(v , g , t)

]
+
∂

∂g

[N(t)− g

σE
p(v , g , t)

]
− a(t)

σE

∂2

∂g2
p(v , g , t) = 0,

v ∈ (0,VF ), g ≥ 0,

Cai, Shelley, McLaughlin, Rangan, Kovacic, Ly, Trnachina...

Sub-elliptic fluxes



Voltage-conductance I&F

From J. Malmivuo and R. Plonsey, Principles and

Appl. of bioelectric and biomagnetic fields, OUP

1995

Ion channels lead to ODE models à la Hodgkin-Huxley

∂

∂t
p(v , g , t) +

∂

∂v

[(
− gLv + g(VE − v)

)
p(v , g , t)

]
+
∂

∂g

[N(t)− g

σE
p(v , g , t)

]
− a(t)

σE

∂2

∂g2
p(v , g , t) = 0,

v ∈ (0,VF ), g ≥ 0,

Theorem (D. Salort, BP)

Stationary solutions belong to L
8
7

−

Evolution solutions are globally bounded in Lp (no blow-up)



Elapsed time structured model

Based on K. Pakdaman, J. Champagnat, J.-F. Vibert

s represents the time elapsed since the last discharge

n(s, t) probability of finding a neuron in ’state’ s at time t

N(t) = activity of the network

∂n(s,t)
∂t

elapsed time advances︷ ︸︸ ︷
+
∂n(s, t)

∂s
+

firing neurons︷ ︸︸ ︷
r(s, bN(t)) n(s, t) = 0,

N(t) := n(s = 0, t) =

∫ +∞

0
r(s, bN(t)) n(s, t)ds︸ ︷︷ ︸

neurons reset

,



Elapsed time structured model

∂n(s,t)
∂t

elapsed time advances︷ ︸︸ ︷
+
∂n(s, t)

∂s
+

firing neurons︷ ︸︸ ︷
r(s, bN(t)) n(s, t) = 0,

N(t) := n(s = 0, t) =

∫ +∞

0
r(s, bN(t)) n(s, t)ds︸ ︷︷ ︸

neurons reset

,
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Right : Conhaim et al (2011) J. of physiology 589(10) 2529-2541.



Noisy LIF networks : CONCLUSION

For the Noisy LIF model synchronization arises as a singularity of
the total activity of the network

But there are regimen with smooth solutions and total
desynchronization

Open problems coupled inhibitory/excitatory

convergence to a steady
state (inhibitory)

Derivation of LIF models



Noisy LIF networks : CONCLUSION
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