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Complex/Algebraic

Dynamical Systems Arithmetic Geometry

X = algebraic variety /C X = algebraic variety /k
f: X —->X k=Q, F,, C(?),...
Study orbits of points Study set of rational points
v, f(2), f(z), (@), .. X (k)
X =A; and X(k) =k
X = C and f = polynomial X = elliptic curve/k, X (k) =7

X =C/(Z ®iZ), a torus, with f(z) = 2z

dynamics <«<—— analysis/geometry <«—— algebra (static)
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Complex dynamics and arithmetic geometry

Special case

A

X = P}(C) = C = Riemann sphere .
elliptic curve

f: X—->X
is a rational function with SOC @)
P(z)
(2)

coefficients in C .
ile., f(z)=
Q(z

7| degree 2

Julia set of f,



Complex dynamics and arithmetic geometry

Special case

elliptic curve

e =

Take, for example, o(P) =P + P = 2P.

7| degree 2
P € FE is torsion if n - P = 0 for some n. P~ —P

P € FE is torsion
<= P is preperiodic for ¢
<= m(P) is preperiodic for f,




Classical result about elliptic curves
E = elliptic curve /k, with kK = number field

For example, take E = { y* = z(z — 1)(x — 22) } C P?(C)
with £ = Q

Mordell-Weil Theorem. (1920s) The set of rational points E(k)
forms a finitely-generated group.
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Classical result about elliptic curves
E = elliptic curve /k, with kK = number field

For example, take E = { y* = z(z — 1)(x — 22) } C P?(C)
with k — Q

Mordell-Weil Theorem. (1920s) The set of rational points E(k)
forms a finitely-generated group.

In particular, the set of torsion points in (k) is finite.

A modern (c. 1960) explanation of this finiteness: logarithmic Weil height

Néron-Tate height function = 2 measure of
fLE : E(@) — R arithmetic complexity
}ALE(P) = lim _hWell 2" P
n—)oo
hol(—P) = A A dynamical construction
£(=P) 2 (Tate)

Key fact: For number fields £, the set
{torsion P € E(k)} = {P € E(k) : hg(P) =0} is finite.



What if the field k

Classical result about elliptic curves . .
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Classical result about elliptic curves . .
is a function field?
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forms a finitely-generated group.
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Mordell-Weil Theorem for function fields. (Lang-Néron 1959,
Néron Tate 1960s) The set of rational points E(k) forms a
finitely-generated group... if E is not isotrivial.

View E/k as a

complex surface
E— X

FE' is isotrivial if
\ 'J all By are isomorphic/C
eg., it E=X x Ejy
\»)
kEk=C(X
) l P A rational point is
a section from X

C o to the surface E
r — r —
X (o) t
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For elliptic curves over function fields: (Lang-Néron 1959,
Néron Tate 1960s) If E/k is not isotrivial, then the set of torsion
points in F(k) is finite.

For rational functions over function fields: (Baker 2008)

If f € k(z) is not isotrivial, then the set of preperiodic points
in P! (k) is finite.

Baker’s theorem actually states: (proof uses analysis on Berkovich P')

If f € k(z) is not isotrivial, there exists a constant B > 0

so that the set )
{PecP'(k): hy(P) < B}

is finite, where h is the canonical height on P! (k).

Complex-dynamics proof in (D., 2015). Key ingredients:
non-isotriviality == bifurcations = degree growth of f"(P)
Riemann-Hurwitz (topology) = finiteness



Dynamical stability and bifurcations:
the analytic input

X = Riemann surface
k = C(X) = meromorphic functions on X

f € k(z) - g ft,t € X, a family of rational functions
P e P (k) P : X — C holomorphic

(f, P) is stable if the sequence {t — f;*(P(t))}, is normal on X.

Biturcations can be quantified by a measure, defined locally by

, 1 . a subharmonic
U(t) = lim (deg f)n log | f" (P(1))] potential function

(written for polynomial f)

up = AU the “bifurcation measure” on X

Theorem. (D. 2015) If up = 0 on X then P is preperiodic for f.

Compare: McMullen (1987), Dujardin-Favre (2008). When P is a critical point
of f, this stability coincides with traditional notion of structural stability.



Example: degree 2 polynomials fi(z) = 2"+t t e C

P=0

The Mandelbrot set

Bifurcation measure pp is

harmonic measure on oM
(Douady-Hubbard, Sibony 1981,

Mané-Sad-Sullivan 1983)



Example: degree 2 polynomials fi(z) = 2"+t t e C

P=1

A Mandelbrot-like set

Bifurcation measure pp is

harmonic measure on oM
(Baker-D. 2014)



Recent result about elliptic curves

Theorem. (Masser-Zannier, 2008—2012, Torsion anomalous points)
Let E; be the Legendre family of elliptic curves.

P = (27 \/2(2 o t)) and Qt — (37 \/6(3 o t))
There are only finitely many ¢t € C \ {0, 1} for which both P; and Q;
are torsion points on Fj.

Compare:
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, Pink, Zilber....
By ={y" =x(z—1)(z — 1)} conjectures/theorems
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Theorem. (Masser-Zannier, 2008—2012, Torsion anomalous points)
Let E; be the Legendre family of elliptic curves.

Py = (a,v/a(a—1)(a —t)) and Q; = (b, /b(b—1)(b — 1))
There are only finitely many ¢t € C \ {0, 1} for which both P; and Q
are torsion points on Fj. a£beC\ {01}

More generally:
for a,b € C(t),

assume nP # m() for all
(n,m) € Z*\ {(0,0)}

Compare:

Lang, Manin-Mumford,
/ te C\ 10, 1}/ Andre-Oort,
, Pink, Zilber....
By ={y" =x(z—1)(z — 1)} conjectures/theorems




Simultaneously torsion

Theorem. (Masser-Zannier, 2008—2012, Torsion anomalous points)
Let E; be the Legendre family of elliptic curves.

Py = (a,v/a(a—1)(a —t)) and Q; = (b, /b(b—1)(b — 1))
There are only finitely many ¢t € C \ {0, 1} for which both P; and Q;

are torsion points on Fj;. ﬂ a#beC\{0,1}

Theorem. Let

B (22 L t)2

 4z(z —1)(z —t)

be the degree-4 Lattes family of rational functions. Fix a # b

in C\ {0,1}. Then there are finitely many parameters
t for which both a and b are preperiodic.

fi(2)

Simultaneously preperiodic



Simultaneously torsion

Theorem. (Masser-Zannier, 2008—2012, Torsion anomalous points)
Let E; be the Legendre family of elliptic curves.

Py = (a,v/a(a—1)(a —t)) and Q; = (b, /b(b—1)(b — 1))
There are only finitely many ¢t € C \ {0, 1} for which both P; and Q;

are torsion points on L. ﬂ a#beC\{0,1}

Theorem. Let

B (22 L t)2

 4z(z —1)(z —t)

be the degree-4 Lattes family of rational functions. Fix a # b

in C\ {0,1}. Then there are finitely many parameters
t for which both a and b are preperiodic.

fi(2)

In joint work with Xiaoguang VWang and Hexi Ye, building on my earlier
work with Matt Baker, we gave a dynamical proof of this statement. The
proof uses both complex dynamics and non-archimedean analysis.



The stronger, “Bogomolov” version

Theorem. Fix a # b in Q, with a,b # 0, 1.
By ={y* = z(z — 1)(z — t)}
P, = (a,v/a(a —1)(a —t)) and Q; = (b, \/b(b — 1)(b — 1))
ha(t) := hg, (P;) = Néron-Tate height
Tor(a) := {t : P, is torsion on E;} = {t : ha(t) = 0}
There exists € > 0 so that
ha(t) + hy(t) > e
for all but finitely many ¢ (and in particular, | Tor(a) N Tor(b)| < co)

Compare: Szpiro, Ullmo, Zhang
proof of the Bogomolov Conjecture



Theorem. (Masser-Zannier, 2008-2012, Torsion anomalous points)
Let E; be the Legendre family of elliptic curves. Fix a # b in C\ {0,1}.

Py = (a,v/a(a—1)(a —t)) and Q; = (b, /b(b—1)(b — 1))
The intersection Tor(a) N Tor(b) is infinite if and only if a = b.

Three ingredients in the dynamical proof

|. Infinite torsion sets: bifurcations + Montel’s Theorem (1920)
For every a, the set Tor(a) = {t : P; is torsion on F,} is infinite.

2. Equidistribution theorem for points of small height on P!
(Baker--Rumely, Favre--Rivera-Letelier, Chambert-Loir, 2006)

For algebraic a # 0, 1, the set Tor(a) (or any infinite Galois
invariant subset) is uniformly distributed with respect to

a canonical measure p, on C\ {0, 1}.
Compare:

3. A study of the bifurcation measure Baker-D. 201 |
Yuan-Zhang 201 |

Ha = Wb if and only ifa=2> Ghioca-Hsia-Tucker 2012



Theorem. (Masser-Zannier, 2008-2012, Torsion anomalous points)
Let E; be the Legendre family of elliptic curves. Fix a # b in C\ {0,1}.

Py = (a,v/a(a—1)(a —t)) and Q; = (b, /b(b—1)(b — 1))
The intersection Tor(a) N Tor(b) is infinite if and only if a = b.

Three ingredients in the dynamical proof

|. Infinite torsion sets: bifurcations + Montel’s Theorem (1920)
For every a, the set Tor(a) = {t : P; is torsion on FE,} is infinite.

2. Equidistribution theorem for points of small height on P!
(Baker--Rumely, Favre--Rivera-Letelier, Chambert-Loir, 2006)

For algebraic a # 0, 1, the set Tor(a) (or any infinite Galois
invariant subset) is uniformly distributed with respect to

a canonical measure p, on C\ {0, 1}.
Hardest part:

3. A study of the bifurcation measure  estimates to show hypotheses
are satisfied (need continuous

fta = pp if and only if a = b potentials at singularities).



Equidistribution on X = C\ {0, 1}
Let k be a number field. Fix a € k(t), with a # 0,1, ¢.
height function on X:  ho(t) := hg, (P;)

Take any infinite sequence of parameters t,, where P, is torsion

on E; . (Then hq(t,) = 0 for all n.) Let G = Gal(k/k).

Mon 2575

tEG tn

converge (in the weak-* topology) to the bifurcation measure p,
on P(C).

(In fact, the measures converge to a probability measure pg ,
on the Berkovich projective line P%j for each place v of k.

m

I'he measure p, , is the Laplacian of the local height function.

m

This works for any sequence ¢, with he(t,) — 0 as n — 0o.)
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Theorem. (Masser-Zannier, 2008-2012, Torsion anomalous points)
Let E; be the Legendre family of elliptic curves. Fix a # b in C\ {0,1}.
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Simultaneously torsion

Theorem. (Masser-Zannier, 2008—2012, Torsion anomalous points)
Let E; be the Legendre family of elliptic curves.

P, = (a,/ala— 1)(a — 1)) and Q, = (b,r/b(b — 1)(b—£))

There are only finitely many ¢t € C \ {0, 1} for which both P; and Q
are torsion points on Fj. ]I a£beC\ {01}

More generally:

Simultaneously preperiodic for a,b € C(t),

assume nP # m(Q)
Theorem. Let (22 _ t)2 for all n,m € Z \ {0}

filz) = dz(z —1)(z — 1)
be the degree-4 Lattes family of rational functions. Fix a £ b

in C\ {0,1}. Then there are finitely many parameters
t for which both a and b are preperiodic.

More generally:
there are no maps ¢;, hy,

commuting with f; for all ¢,
so that g(a) = h(D).



Zannier’s Question. Fix any one-parameter family of
rational functions {f;, t € X} and two points a,b : X — P,

If a(t) and b(t) are simultaneously preperiodic for infinitely
many parameters t € X, what can we conclude about a and b7

with Matt Baker (201 3):

Conjecture. Let V be an /N-dimensional complex algebraic
variety in the moduli space M, of rational maps of degree d.

Let (ag,aq,...,an) be an (N + 1)-tuple of marked points.

Then the points are simultaneously preperiodic on a Zariski-dense
subset of V' if and only if the points are dynamically related.

A collection of n points aq,...,a, is dynamically related
along V' if there exists a subvariety X C (P.)", with k = k(V)

such that
(1) (a1,...,a,) € X, and
(2) X is forward-invariant under (f,..., f)



Zannier’s Question. Fix any one-parameter family of
rational functions {f;, t € X} and two points a,b : X — P,

If a(t) and b(t) are simultaneously preperiodic for infinitely
many parameters t € X, what can we conclude about a and b7

(Goal 1: show equidistribution of these special parameters ¢.

Goal 2: analyze the bifurcation measures ., and py.

Goal 3: If u, = up then how are a and b related?

Recall:

U(t) = lim ——— log | f7(P(£))

n—oo (deg f)"
pp = AU

Theorem. (D. 2015) If up = 0 on X then P is preperiodic for f.



Special case: when the points are critical points

Let f; be a 1-parameter family of polynomials of degree d > 2.
Assume the critical points ¢;(t) are polynomialint,i=1,...,d — 1.
Theorem. (Baker-D., 2013) The following are equivalent:

(1) the polynomial f; is PCF for infinitely many ¢
(2) every pair of active critical points ¢;, ¢; satisfies a critical
orbit relation, ~ -

fi'(ci(t)) = he(fi"(c;(2)))

where h € C[t, z] commutes with an iterate f; for all t.

Ingredient 1: an arithmetic equidistribution theorem in the Berkovich
projective line (Baker-Rumely, Favre-Rivera-Letelier, Chambert-Loir, 2006)

Ingredient 2: classical complex analysis, univalent function theory, Ritt’s
decomposition theory (1925), Medvedev-Scanlon (2012)



Higher dimensional parameter spaces

fi,t € X, a family of rational functions
P : X — C holomorphic

Bifurcation measure N Bifurcation currents
on a Riemann surface on a complex manifold
up = AUp Tp = 00Up
U(t) = lim —— log | f"(P(t))] Tp = (80Up)""

n—oo (deg f)™ k < dimeX

Question. If TE = TCS for some k, what can we conclude about
P and ()7 Do their orbits coincide under iteration of f;7



