Regularisation by noise in PDEs

Massimiliano Gubinelli\(^*\)\(^{1,2}\)

\(^1\)Centre de REcherches en MAthématiques de la DÉcision (CEREMADE) – CNRS : UMR7534, Université Paris IX - Paris Dauphine, Institut universitaire de France – Place du Maréchal de Lattre de Tassigny 75775 - Paris Cedex 16, France

\(^2\)Institut Universitaire de France (IUF) – Ministère de l’Enseignement Supérieur et de la Recherche Scientifique – Maison des Universités, 103 Boulevard Saint-Michel, 75005 Paris, France

Abstract

We talk about good properties of bad functions. In the first part of the talk we review progresses in the analysis of situations where the presence of stochastic noise improves the theory of certain classes of PDEs. In the second part we propose a notion of \textit{irregularity} for deterministic signals and use it to analyse the regularising effect of such signals on PDEs. In particular, in certain situations, we show in a quantitative way that the more the perturbation is irregular the more the properties of the equation are better. Examples include linear stochastic transport equations and non-linear modulated dispersive PDEs.

\(^*\)Speaker