Unique Continuation in Asymptotically Anti-de Sitter Spacetimes

Arick Shao* and Gustav Holzegel

1Imperial College London – United Kingdom

Abstract

In this talk, we consider the problem of unique continuation from infinity for Anti-de Sitter (AdS) and asymptotically AdS spacetimes. We show, roughly, that given a solution \(\phi \) of a linear (massive or massless) wave equation on AdS spacetime, if \(\phi \) and its first derivative vanish to high enough order (depending on the mass) on a sufficiently large but finite portion of infinity, then \(\phi \) must also necessarily vanish in a small neighborhood of infinity. In particular, this establishes a correspondence between data for \(\phi \) at infinity and the value of \(\phi \) in the interior. When available, we also connect our results to the well-posedness theory: we show that trivial Dirichlet and Neumann data at (a large enough portion of) infinity along with sufficient regularity implies vanishing in the interior. Furthermore, all these results generalize to a large class of asymptotically AdS spacetimes, as well as to tensor-valued waves. These techniques are also viable for studying nonlinear wave equations; one application is to study corresponding uniqueness properties for the Einstein-vacuum equations with negative cosmological constant.