Interactions between noise and rate-induced tipping

Paul Ritchie

1College of Engineering, Mathematics and Physical Sciences [Exeter] – Prince of Wales Road Exeter, Devon EX4 4SB, United Kingdom

Abstract

A non-autonomous system is defined to pass a tipping point when gradual changes in input levels cause the output to change suddenly. We study a prototypical model for rate-induced tipping, the saddle-node normal form subject to parameter drift and noise. We determine the most likely time of escape by finding the optimal path of escape. This is a variational optimisation problem that can be transformed into a second order boundary value problem. This is solved using continuation techniques in AUTO, which generates contours for the optimal time of escape in a two parameter plane. The overall probability of escape can be approximated using the instantaneous eigenmodes of the also non-autonomous Fokker-Planck equation. Combining the timing and probability of escape can potentially give us an additional early-warning indicator for noise and rate-induced tipping.