Normalized solutions for coupled cubic Schrödinger equations

Nicola Soave*1

1Justus Liebig University of Giessen – Germany

Abstract

We consider the system of coupled elliptic equations

\[
\begin{aligned}
-\Delta u - \lambda_1 u &= \mu_1 u^3 + \beta uv^2 \\
-\Delta v - \lambda_2 v &= \mu_2 v^3 + \beta u^2 v \\
\end{aligned}
\]

in \mathbb{R}^3, $u, v > 0$

searching for solutions satisfying the additional condition

\[
\int_{\mathbb{R}^3} u^2 = a_1^2 \quad \text{and} \quad \int_{\mathbb{R}^3} v^2 = a_2^2.
\]

Assuming that a_1, a_2, μ_1, μ_2 are positive fixed quantities, we prove existence results for different ranges of the coupling parameter $\beta > 0$. The extension to systems with an arbitrary number of components is discussed, as well as the orbital stability of the solutions for the corresponding Schrödinger equations. This is a joint work with Thomas Bartsch and Louis Jeanjean.

*Speaker