Linearized fully homogenized model for incompressible two-phase flow in double porosity media

Anja Vrbaški^{*†1}, Leonid Pankratov², and Mladen Jurak¹

¹University of Zagreb, Faculty of Science, Department of Mathematics (PMF-MO) – Bijenička cesta 30, 10000 Zagreb, Croatia

²Laboratory of Fluid Dynamics and Seismic, Moscow Institute of Physics and Technology (MIPT) – 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russian Federation, Russia

Abstract

We derive the global behavior of the incompressible two-phase fluid flow through porous media with thin fractures. The fractured medium is a type of porous medium frequently encountered in hydrology and petroleum applications, which is characterized by the presence of two porous structures with strongly contrasted transport features: a continuous system of highly conductive fractures, which is assumed to be thin of order $\varepsilon \delta$, is intertwined by a disconnected ε -periodic set of blocks of usual porous media. The permeability of the blocks is proportional to $(\varepsilon \delta)^2$, while the permeability of the fractures is of order one. After passing to the limit as $\varepsilon \to 0$ we obtain the corresponding global δ -model, i.e., the homogenized model with the coefficients depending on the small parameter δ . In δ -model we linearize the cell problem in the matrix block and compare the new linearized cell problem with a known linearization and with the nonlinear cell problem. By letting $\delta \to 0$ we obtain the macroscopic model which does not depend on ε and δ and is fully homogenized in the sense that all the coefficients are calculated in terms of given data and do not depend on the additional coupling or cell problems.

^{*}Speaker

[†]Corresponding author: avrbaski@math.hr