Quantitative isoperimetric inequalities for log-convex probability measures on the line.

Maria Rosaria Posteraro*†, Filomena Feo2, and Cyril Roberto3

1Università di Napoli Federico II – Italy
2Università degli studi di Napoli Parthenope – Italy
3Université Paris Ouest Nanterre La Défense – Université Paris Ouest Nanterre La Défense – France

Abstract

We analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré). Then we give a quantitative form of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, it could be that a set is very close to be optimal, in the sense that the isoperimetric inequality is almost an equality, but at the same time is very far (in the sense of the symmetric difference between sets) to any extremal sets!

REFERENCES