Krasnosel’skii Formula for constrained semilinear differential inclusion

Wojciech Kryszewski1 and Jakub Siemianowski*1

1Faculty of Mathematics and Computer Science, Nicolaus Copernicus University – ul. Chopina 12/18, 87-100 Toruń, Poland

Abstract

The well-known Krasnosel’skii formula concerns an ODE $\dot{x} = f(t, x)$, $x \in \mathbb{R}^N$, $t \in [0, 1]$. Roughly speaking, it asserts that the Brouwer degrees of $-f(0, \cdot)$ and $\text{Id} - P_t$ are equal, where P_t is the associated Poincaré t-operator. We consider a constrained semilinear evolution inclusions of parabolic type

\begin{equation}
\begin{cases}
\dot{u}(t) \in Au(t) + F(t, u(t)), & t \in [0, 1], u \in \mathcal{K}, \\
u(0) = x \in \mathcal{K},
\end{cases}
\end{equation}

in the infinite dimension Banach/Hilbert space and topological properties of the solution map. The set of constraints \mathcal{K} is assumed to be closed and convex. A counterpart of Krasnosel’skii formula concerning (1), namely a relation between the constrained fixed point index of the Krasnosel’skii–Poincaré operator of translation along trajectories associated with (1) and the constrained topological degree of the right-hand side $A + F(0, \cdot)$ will be presented. The connection joining the problem (1) and partial differential inclusion on the open bounded subset of \mathbb{R}^N will be discussed.

*Speaker