A mathematical model describing concrete carbonation process

Kota Kumazaki*1

1Department of Natural and Physical Sciences, Tomakomai National College of Technology – Japan

Abstract

In this talk, we consider a mathematical model for concrete carbonation phenomenon. This model consists of moisture transport and carbon dioxide transport. Moisture transport is described as a quasilinear parabolic equation with a hysteresis effect between the relative humidity and the degree of saturation, and carbon dioxide transport is a parabolic equation considered the concentration of carbon dioxide in air and in water. In this talk, we discuss the existence and uniqueness of a solution for an initial boundary value problem of this model.