Rough flows and homogenization in fast-slow dynamics

Ismael Bailleul1, Sebastian Riedel2, and Rémi Catellier3

1IRMAR – université Rennes 1 – France
2TU Berlin – Germany
3Université Rennes 1 (IRMAR) – université Rennes 1 – France

Abstract

A general machinery for constructing flows from approximate flows has recently been introduced in the work "Flows driven by rough paths", where it was used to give a simple approach to the core results on rough differential equations. This framework is wider though, and allows to extend the standard theory of stochastic flows beyond the setting of Itô-Stratonovich integration theory. This requires to introduce a setting in which (random) velocity fields are lifted to enriched objects, in the same spirit as rough paths theory. The integration theory of these objects is simple in the above-mentioned setting of approximate flows and shares the same benefits as Lyons’ theory: the continuity of the solution map. This continuity result is the key step to get a quick access to interesting homogenization results for fast-slow dynamics, by lifting these systems into the setting of rough flows, and by combining deterministic and probabilistic arguments.