Data Assimilation: New Challenges in Random and Stochastic Dynamical Systems

Daniel Sanz-Alonso & Andrew Stuart

D Blömker (Augsburg), D Kelly (NYU), KJH Law (KAUST), A. Shukla (Warwick), KC Zygalakis (Southampton)

EQUADIFF 2015 Lyon, France, July 6th 2015 Funded by EPSRC, ERC and ONR

Enabling Quantification of

INTRODUCTION THREE IDEAS DISCRETE TIME: THEORY CONTINUOUS TIME: DIFFUSION LIMITS CONCLUSIONS

Outline

- **2** THREE IDEAS
- OISCRETE TIME: THEORY
- 4 CONTINUOUS TIME: DIFFUSION LIMITS

5 CONCLUSIONS

INTRODUCTION THREE IDEAS DISCRETE TIME: THEORY CONTINUOUS TIME: DIFFUSION LIMITS CONCLUSIONS

Table of Contents

2 THREE IDEAS

- 3 DISCRETE TIME: THEORY
- **4** CONTINUOUS TIME: DIFFUSION LIMITS

5 CONCLUSIONS

Signal

Consider the following map on Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle, |\cdot|)$:

Signal Dynamics $v_{j+1} = \Psi(v_j), \qquad v_0 \sim \mu_0.$

Signal

Consider the following map on Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle, |\cdot|)$:

Signal Dynamics

$$v_{j+1} = \Psi(v_j), \qquad v_0 \sim \mu_0.$$

Assume dissipativity:

Absorbing Set

Compact B in \mathcal{H} with the property that, for $|v_0| \leq R$, there is J = J(R) > 0 such that, for all $j \geq J$, $v_j \in B$.

Signal

Consider the following map on Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle, |\cdot|)$:

Signal Dynamics

$$v_{j+1} = \Psi(v_j), \qquad v_0 \sim \mu_0.$$

Assume dissipativity:

Absorbing Set

Compact B in \mathcal{H} with the property that, for $|v_0| \leq R$, there is J = J(R) > 0 such that, for all $j \geq J$, $v_j \in B$.

Limited predictability:

Global Attractor

$$d(v_j, \mathcal{A}) \to 0$$
, as $j \to \infty$.

Signal and Observation

Random initial condition:

Signal Process

$$v_{j+1} = \Psi(v_j), \qquad v_0 \sim \mu_0.$$

Signal and Observation

Random initial condition:

Signal Process

$$v_{j+1} = \Psi(v_j), \qquad v_0 \sim \mu_0.$$

Observations, partial and noisy, $P : \mathcal{H} \to \mathbb{R}^J$:

Observation Process

$$y_{j+1} = Pv_{j+1} + \epsilon \xi_{j+1}, \qquad \mathbb{E}\xi_j = 0, \quad \mathbb{E}|\xi_j|^2 = 1, \text{ i.i.d. w/pdf } \rho.$$

Signal and Observation

Random initial condition:

Signal Process

$$v_{j+1} = \Psi(v_j), \qquad v_0 \sim \mu_0.$$

Observations, partial and noisy, $P : \mathcal{H} \to \mathbb{R}^J$:

Observation Process

$$y_{j+1} = Pv_{j+1} + \epsilon \xi_{j+1}, \qquad \mathbb{E}\xi_j = 0, \quad \mathbb{E}|\xi_j|^2 = 1, \text{ i.i.d. w/pdf } \rho.$$

Filter: probability distribution of v_j given observations to time *j*:

Filter

$$\mu_j(A) = \mathbb{P}(v_j \in A | \mathcal{F}_j), \quad \mathcal{F}_j = \sigma(y_1, \dots, y_j).$$

Signal and Observation: Control Unpredictability?

Pushforward under dynamics:

Signal Process $\widehat{\mu}_{j+1} = \Psi \star \mu_j.$

Signal and Observation: Control Unpredictability?

Pushforward under dynamics:

Signal Process

$$\widehat{\mu}_{j+1} = \Psi \star \mu_j.$$

Incorporate observations via Bayes' Theorem:

Observation Process

$$\mu_{j+1}(A) = \frac{\int_A \rho(\epsilon^{-1}(y_{j+1} - Pv))\widehat{\mu}_{j+1}(dv)}{\int_{\mathcal{H}} \rho(\epsilon^{-1}(y_{j+1} - Pv))\widehat{\mu}_{j+1}(dv)}$$

Signal and Observation: Control Unpredictability?

Pushforward under dynamics:

Signal Process

$$\widehat{\mu}_{j+1} = \Psi \star \mu_j.$$

Incorporate observations via Bayes' Theorem:

Observation Process

$$\mu_{j+1}(A) = \frac{\int_A \rho(\epsilon^{-1}(y_{j+1} - Pv))\widehat{\mu}_{j+1}(dv)}{\int_{\mathcal{H}} \rho(\epsilon^{-1}(y_{j+1} - Pv))\widehat{\mu}_{j+1}(dv)}$$

When is the filter predictable:

Filter Accuracy

$$\mu_j \approx \delta_{v_j^{\dagger}} \text{ as } j \to \infty.$$

Goal (Cerou [5], SIAM J. Cont. Opt. 2000)

Key Question: For which Ψ and P does the filter μ^{j} concentrate on the true signal, up to error ϵ , in the large-time limit?

Goal (Cerou [5], SIAM J. Cont. Opt. 2000)

Key Question: For which Ψ and P does the filter μ^{j} concentrate on the true signal, up to error ϵ , in the large-time limit?

Key Problem: Ψ may expand

Goal (Cerou [5], SIAM J. Cont. Opt. 2000)

Key Question: For which Ψ and P does the filter μ^{j} concentrate on the true signal, up to error ϵ , in the large-time limit?

Key Problem: Ψ may expand

View *P* as a **projection** on \mathcal{H} . Define Q = I - P.

Key Idea: $Q\Psi$ should contract

A Large Class of Examples

Geophysical Applications

$$\frac{dv}{dt} + Au + B(u, u) = f.$$

Dissipative with energy conserving nonlinearity

•
$$\exists \lambda > 0 : \langle Av, v \rangle \geq \lambda |v|^2.$$

•
$$\langle B(v,v),v\rangle = 0.$$

•
$$f \in L^2_{\text{loc}}(\mathbb{R}^+;\mathcal{H}).$$

Examples

Lorenz '63

Lorenz '96

Incompressible 2D Navier-Stokes equation on a torus

INTRODUCTION THREE IDEAS DISCRETE TIME: THEORY CONTINUOUS TIME: DIFFUSION LIMITS CONCLUSIONS

Table of Contents

INTRODUCTION

2 THREE IDEAS

3 DISCRETE TIME: THEORY

4 CONTINUOUS TIME: DIFFUSION LIMITS

5 CONCLUSIONS

Idea 1: Synchronization (Foias and Prodi [7], RSM Padova 1967 Pecora and Carroll [13], PRL 1990.)

Truth
$$v^{\dagger} = (p^{\dagger}, q^{\dagger})$$
Synchronization Filter $m = (p, q)$ $p_{j+1}^{\dagger} = P\Psi(p_j^{\dagger}, q_j^{\dagger}),$ $p_{j+1} = p_{j+1}^{\dagger},$ $q_{j+1}^{\dagger} = Q\Psi(p_j^{\dagger}, q_j^{\dagger}),$ $q_{j+1} = Q\Psi(p_j^{\dagger}, q_j);$ $- - v_{j+1}^{\dagger} = \Psi(v_j^{\dagger}),$ $m_{j+1} = Q\Psi(m_j) + p_{j+1}^{\dagger}.$

Idea 1: Synchronization (Foias and Prodi [7], RSM Padova 1967 Pecora and Carroll [13], PRL 1990.)

Truth
$$v^{\dagger} = (p^{\dagger}, q^{\dagger})$$
Synchronization Filter $m = (p, q)$ $p_{j+1}^{\dagger} = P\Psi(p_j^{\dagger}, q_j^{\dagger}),$ $p_{j+1} = p_{j+1}^{\dagger},$ $q_{j+1}^{\dagger} = Q\Psi(p_j^{\dagger}, q_j^{\dagger}),$ $q_{j+1} = Q\Psi(p_j^{\dagger}, q_j);$ $-- -- v_{j+1}^{\dagger} = \Psi(v_j^{\dagger}),$ $m_{j+1} = Q\Psi(m_j) + p_{j+1}^{\dagger}.$

Synchronization for various chaotic dynamical systems (including the three canonical examples above [8, 13, 4, 14]):

$$m_j - v_j^{\dagger} | \to 0$$
, as $j \to \infty$.

Idea 2: 3DVAR (Lorenc [12] Q. J. R. Met. Soc 1986)

Cycled 3DVAR Filter. $|\cdot|_{\mathcal{A}} = |\mathcal{A}^{-\frac{1}{2}} \cdot |$.

$$m_{j+1} = \operatorname{argmin}_{m \in \mathcal{H}} \{ |m - \Psi(m_j)|_C^2 + \epsilon^{-2} |y_{j+1} - Pm|_{\Gamma}^2 \}.$$

Solve Variational Equations (with $C = \epsilon^2 (\eta^{-2} \Gamma P + Q))$

$$m_{j+1} = (I - K)\Psi(m_j) + Ky_{j+1}, \quad K = (1 + \eta^2)^{-1}P_{j+1}$$

Variance Inflation (from weather prediction) $\eta \ll 1$

$$m_{j+1} = Q\Psi(m_j) + Py_{j+1}, \quad \eta = 0.$$
 Synchronization Filter.

Inaccurate: η too large. (NSE torus) Law and S [10], Monthly Weather Review, 2012

Accurate: smaller η . (NSE torus) Law and S [10], Monthly Weather Review, 2012

Idea 3: Filter Optimality (Folklore, but see e.g. Williams ···)

Recall $\mathcal{F}_j = \sigma(y_1, \dots, y_j)$ and define the mean of the filter:

$$\hat{v}_j := \mathbb{E}(v_j | \mathcal{F}_j) = \mathbb{E}^{\mu_j}(v_j).$$

Use Galerkin orthogonality wrt conditional expectation

For any \mathcal{F}_j measurable m_j :

$$\mathbb{E}|v_j-\hat{v}_j|^2 \leq \mathbb{E}|v_j-m_j|^2.$$

Take m_j from **3DVAR** to get bounds on the mean of the filter. Similar bounds apply to the variance of the filter. (Not shown.) INTRODUCTION THREE IDEAS DISCRETE TIME: THEORY CONTINUOUS TIME: DIFFUSION LIMITS CONCLUSIONS

Table of Contents

INTRODUCTION

OISCRETE TIME: THEORY

4 CONTINUOUS TIME: DIFFUSION LIMITS

5 CONCLUSIONS

Assumptions

There are two equivalent Hilbert spaces: $(\mathcal{H}, \langle \cdot, \cdot \rangle, |\cdot|)$ and $(\mathcal{V}, \langle \cdot, \cdot \rangle_{\mathcal{V}}, ||\cdot||)$:

Assumption 1: Absorbing Ball Property

There is $R_0 > 0$ such that:

- for $B(R_0) := \{x \in \mathcal{H} : |x| \le R_0\}$, $\Psi(B(R_0)) \subset B(R_0)$;
- for any bounded set $S \subset \mathcal{H} \exists J = J(S) : \Psi^J(S) \subset B(R_0)$.

Assumption 2: Squeezing Property

There is $\alpha(R_0) \in (0,1)$ such that, for all $u, v \in B(R_0)$,

$$\|Q(\Psi(u) - \Psi(v))\|^2 \le \alpha(\mathbf{R_0})\|u - v\|^2.$$

Theorem (Sanz-Alonso and S, 2014, [15])

Let Assumptions 1,2 hold. Then there is a constant c > 0independent of the noise strength ϵ such that

$$\limsup_{j\to\infty}\mathbb{E}|v_j-\hat{v}_j|^2\leq c\epsilon^2$$

Idea of proof:

Fix m₀ ∈ B(R₀) and let P denote the H−projection onto B(R₀). Define the modified 3DVAR:

$$m_{j+1} = \mathcal{P}(Q\Psi(m_j) + y_{j+1}).$$

Prove

$$\limsup_{j\to\infty}\mathbb{E}|v_j-m_j|^2\leq c\epsilon^2.$$

• Use the L^2 optimality of the filtering distribution.

Idea of proof (sketch, Ψ globally Lipschitz):

$$m_{j+1} = Q\Psi(m_j) + \widetilde{P\Psi(v_j) + \epsilon\xi_{j+1}} + P\Psi(v_j) + \epsilon\xi_{j+1}$$
$$v_{j+1} = Q\Psi(v_j) + P\Psi(v_j).$$

y_{j+1}

Subtract and use independence plus contractivity of $Q\Psi$:

$$\begin{split} \mathbb{E} \| v_{j+1} - m_{j+1} \|^2 &= \mathbb{E} \| Q \left(\Psi(v_j) - \Psi(m_j) \right) - \epsilon \xi_{j+1} \|^2 \\ &\leq \mathbb{E} \| Q \left(\Psi(v_j) - \Psi(m_j) \right) \|^2 + \epsilon^2 \mathbb{E} \| \xi_{j+1} \|^2 \\ &\leq \alpha \mathbb{E} \| v_j - m_j \|^2 + \epsilon^2 \mathbb{E} \| \xi_{j+1} \|^2. \end{split}$$

Use Gronwall.

Lorenz '63 (uses noiseless synchronization filter analysis in Hayden, Olson and Titi [8], Physica D 2011.)

$$\frac{dv^{(1)}}{dt} + a(v^{(1)} - v^{(2)}) = 0$$

$$\frac{dv^{(2)}}{dt} + av^{(1)} + v^{(2)} + v^{(1)}v^{(3)} = 0$$

$$\frac{dv^{(3)}}{dt} + \underbrace{bv^{(3)}}_{Av} - \underbrace{-v^{(1)}v^{(2)}}_{B(v,v)} = \underbrace{-b(r+a)}_{f}$$

Observation matrix

$$P := \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

Theory applicable with $\|\cdot\|^2 := |P \cdot|^2 + |\cdot|^2$ for *h* sufficiently small: [8], [11].

Lorenz '96 (Law, Sanz-Alonso, Shukla and S [14], arXiv 2014.)

Consider the following system, subject to the periodicity boundary conditions $v_0 = v_{3J}$, $v_{-1} = v_{3J-1}$, $v_{3J+1} = v_1$:

Observation matrix P: observe 2 out of every 3 points. Theory applicable with $\|\cdot\|^2 := |P \cdot|^2 + |\cdot|^2$ for h sufficiently small: [14].

2D Navier-Stokes Equation (again uses analysis in Hayden, Olson and Titi [8], Physica D 2011.)

 P_{leray} denotes the Leray projector:

$$Au = -
u P_{ ext{leray}} \Delta u, \qquad B(u,v) = rac{1}{2} P_{ ext{leray}}[u \cdot
abla v] + rac{1}{2} P_{ ext{leray}}[v \cdot
abla u].$$

Observation operator in (divergence-free) Fourier space:

$$Pu = \sum_{|k| \le k_{\max}} u_k \frac{k^{\perp}}{|k|} e^{ik \cdot x}$$

Theory applicable with $\mathcal{H} = \mathcal{V} := H^1_{div}(\mathbb{T}^2)$ and k_{max} sufficiently large/h sufficiently small: [3], [8].

INTRODUCTION THREE IDEAS DISCRETE TIME: THEORY CONTINUOUS TIME: DIFFUSION LIMITS CONCLUSIONS

Summary of Examples

Observations control unpredictability in these cases:

ODE	Dimension of v	Rank(P)
Lorenz '63	3	1
Lorenz '96	3J	2J
NSE on torus	∞	Finite

INTRODUCTION THREE IDEAS DISCRETE TIME: THEORY CONTINUOUS TIME: DIFFUSION LIMITS CONCLUSIONS

Table of Contents

INTRODUCTION

- 2 THREE IDEAS
- OISCRETE TIME: THEORY
- 4 CONTINUOUS TIME: DIFFUSION LIMITS

5 CONCLUSIONS

Generalize 3DVAR: The EnKF. Evensen [6] Journal of Geophysical Research 1994.

Ensemble Kalman Filter. For n = 1, ..., N:

$$v_{j+1}^{(n)} = \operatorname{argmin}_{v \in \mathcal{H}} \{ |v - \Psi(v_j^{(n)})|_{C_j}^2 + \epsilon^{-2} |y_{j+1}^{(n)} - Pv|_{\Gamma}^2 \}.$$

Empirical Covariance

$$ar{v}_j = rac{1}{N}\sum_{n=1}^N v_j^{(n)}, \quad C_j = rac{1}{N}\sum_{n=1}^N (v_j^{(n)} - ar{v}_j) \otimes (v_j^{(n)} - ar{v}_j).$$

Perturbed Observations

$$y_{j+1}^{(n)} = y_{j+1} + \epsilon \xi_j^{(n)}, \quad \xi_j^{(n)} \text{ i.i.d. w/pdf } \rho.$$

S(P)DE Limits with Brett et al [3], Blömker et al 2012 [2], Kelly et al 2014 [9]

High Frequency Data Limit – 3DVAR

$$\frac{dm}{dt} + Am + B(m,m) + CP^*\Gamma^{-1}\left(P(m-\nu) + \epsilon\Gamma^{\frac{1}{2}}\frac{dW}{dt}\right) = f$$

S(P)DE Limits with Brett et al [3], Blömker et al 2012 [2], Kelly et al 2014 [9],

High Frequency Data Limit – 3DVAR

$$\frac{dm}{dt} + Am + B(m,m) + CP^*\Gamma^{-1}\Big(P(m-v) + \epsilon\Gamma^{\frac{1}{2}}\frac{dW}{dt}\Big) = f$$

High Frequency Data Limit - Ensemble Kalman Filter

$$\frac{dv^{(n)}}{dt} + Av^{(n)} + B(v^{(n)}, v^{(n)}) + CP^*\Gamma^{-1}\left(P(v^{(n)} - v) + \epsilon\Gamma^{\frac{1}{2}}\frac{dW^{(n)}}{dt}\right) = f$$
$$\overline{v} = \frac{1}{J}\sum_{j=1}^J v^{(n)}, \quad C = \frac{1}{J}\sum_{j=1}^J (v^{(n)} - \overline{v}) \otimes (v^{(n)} - \overline{v}).$$

S(P)DE Accuracy see also Azouani, Olson and Titi 2014 [1] and Tong, Majda, Kelly 2015 [16] .

Theorem (3DVAR Accurate, with Blömker 2012 et al [2])

Under similar assumptions to the discete case there is a constant c > 0 independent of the noise strength ϵ such that

$$\limsup_{t\to\infty} \mathbb{E}|v-m|^2 \le c\epsilon^2$$

Theorem (EnKF Well-Posed, with Kelly et al [9])

Let Assumptions 1 hold and P=I. Then there is a constant c > 0 independent of the noise strength ϵ such that

$$\sup_{t\in[0,T]}\sum_{n=1}^{N}\mathbb{E}|v^{(n)}(t)|^{2}\leq C(T)(1+\mathbb{E}|v^{(n)}(0)|^{2}).$$

SPDE Inaccurate (NSE Torus) (Blömker et al [2])

SPDE Accurate (NSE Torus) (Blömker et al [2])

INTRODUCTION THREE IDEAS DISCRETE TIME: THEORY CONTINUOUS TIME: DIFFUSION LIMITS CONCLUSIONS

Table of Contents

INTRODUCTION

- **2** THREE IDEAS
- OISCRETE TIME: THEORY
- **4** CONTINUOUS TIME: DIFFUSION LIMITS

5 CONCLUSIONS

 Chaos – and resulting unpredictability – is the enemy in many scientific and engineering applications.

- **Chaos** and resulting **unpredictability** is the enemy in many scientific and engineering applications.
- Its study has led to a great deal of interesting mathematics over the last century.

- **Chaos** and resulting **unpredictability** is the enemy in many scientific and engineering applications.
- Its study has led to a great deal of interesting mathematics over the last century.
- Data when combined with models can have a massive positive impact on prediction in all of these scientific and engineering applications.

- **Chaos** and resulting **unpredictability** is the enemy in many scientific and engineering applications.
- Its study has led to a great deal of interesting mathematics over the last century.
- Data when combined with models can have a massive positive impact on prediction in all of these scientific and engineering applications.
- The emerging new field, in which model and data are analyzed simultaneously, will lead to interesting new mathematics over the next century.

- **Chaos** and resulting **unpredictability** is the enemy in many scientific and engineering applications.
- Its study has led to a great deal of interesting mathematics over the last century.
- Data when combined with models can have a massive positive impact on prediction in all of these scientific and engineering applications.
- The emerging new field, in which model and data are analyzed simultaneously, will lead to interesting new mathematics over the next century.
- Data Assimilation needs input from Dynamical Systems.

References I

A. Azouani, E. Olson, and E.S. Titi.

Continuous data assimilation using general interpolant observables.

Journal of Nonlinear Science, 24(2):277–304, 2014.

D. Blömker, K.J.H. Law, A.M. Stuart, and K.C. Zygalakis.

Accuracy and stability of the continuous-time 3DVAR filter for the Navier-Stokes equation.

Nonlinearity, 26:2193-2219, 2013.

C.E.A. Brett, K.F. Lam, K.J.H. Law, D.S. McCormick, M.R. Scott, and A.M. Stuart

Accuracy and Stability of Filters for the Navier-Stokes equation.

Physica D: Nonlinear Phenomena, 245:34–45, 2013.

A. Carrassi, M. Ghil, A. Trevisan, and F. Uboldi.

Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 18:023112, 2008.

References II

F. Cérou.

Long time behavior for some dynamical noise free nonlinear filtering problems.

SIAM Journal on Control and Optimization, 38(4):1086–1101, 2000.

G. Evensen.

Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics.

Journal of Geophysical Research, pages 143–162, 1994.

C. Foias and G. Prodi.

Sur le comportment global des solutions non statiennaires des equations de Navier-Stokes en dimension 2.

Rend. Sem. Mat. Univ. Padova, 39, 1967.

Discrete Data Assimilation in the Lorenz and 2D Navier–Stokes equations. *Physica D: Nonlinear Phenomena*, 240:1416–1425, 2011.

References III

D.T.B. Kelly, K.J.H. Law, and A.M. Stuart.

Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time.

Nonlinearity, 27:2579-2603, 2014.

K.Law and A.M. Stuart.

Evaluating data assimilation algorithms.

Monthly Weather Review, 140:3757-3782, 2012.

K.J.H. Law, A. Shukla, and A.M. Stuart.

Analysis of the 3DVAR Filter for the Partially Observed Lorenz '63 Model. *Discrete and Continuous Dynamical Systems A*, 34:1061–1078, 2014.

A.C. Lorenc.

Analysis methods for numerical weather prediction.

Quarterly Journal of the Royal Meteorological Society, 112(474):1177–1194, 1986.

References IV

L.M. Pecora and T.L. Carroll.

Synchronization in chaotic systems.

Physical review letters, 64(8):821, 1990.

D. Sanz-Alonso, K.J.H. Law, A. Shukla, and A.M. Stuart.

Filter accuracy for chaotic dynamical systems: fixed versus adaptive observation operators.

arxiv.org/abs/1411.3113, 2014.

D. Sanz-Alonso and A.M. Stuart.

Long-time asymptotics of the filtering distribution for partially observed chaotic deterministic dynamical systems.

arxiv.org/abs/1411.6510, 2014.

- X.T. Tong, A.J. Majda, and D.T.B. Kelly.

Nonlinear stability and ergodicity of ensemble based Kalman filters. NYU preprint 2015.

References V

MATLAB files and book chapters freely available: http://tiny.cc/damat

http://www2.warwick.ac.uk/fac/sci/maths/people/staff/andrew_stuart/

