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The Ginzburg-Landau equations

u:QcR2=C

—Au = E%(l — |ul*)| Ginzburg-Landau equation (GL)

Oru = Au + (1 — |u|?)| parabolic GL equation (PGL)

i0ru = Au + (1 —|u[?)| Gross-Pitaevskii equation (GP)

Associated energy

/|V 2+ |U| )?

Models: superconductivity, superfluidity, Bose-Einstein condensates,
nonlinear optics



Vortices

» in general |u| <1, |u| ~ 1 = superconducting/superfluid phase,
|u] ~ 0 = normal phase
» u has zeroes with nonzero degrees = vortices
» u = pe'?, characteristic length scale of {p < 1} is ¢ = vortex core
size
h(R)
p(R)

R

» degree of the vortex at xg:

1 0

— =deZ
27T aB(xo,r) 87’

» In the limit & — 0 vortices become points, (or curves in dimension
3).



Solutions of (GL), bounded number N of vortices

» minimimal energy

min E. = wN|loge| + min W +o(1) as € =0

» u. minimizing E. has vortices all of degree +1 (or all —1) which
converge to a minimizer of

W((x1,d1),...,(xn,dn)) = —7 Z did; log |xi—xj|+boundary terms...
i#

“renormalized energy", Kirchhoff-Onsager energy (in the whole
plane) [Bethuel-Brezis-Hélein '94]

» Some boundary condition needed to obtain nontrivial minimizers
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» u. minimizing E. has vortices all of degree +1 (or all —1) which
converge to a minimizer of

W((x1,d1),...,(xn,dn)) = —7 Z did; log |xi—xj|+boundary terms...
i#j
“renormalized energy", Kirchhoff-Onsager energy (in the whole
plane) [Bethuel-Brezis-Hélein '94]
» Some boundary condition needed to obtain nontrivial minimizers

» nonminimizing solutions: wu. has vortices which converge to a critical
point of W:
ViW{x})=0 Vvi=1,---N

[Bethuel-Brezis-Heélein '94]



Dynamics, bounded number N of vortices

v

For well-prepared initial data, d; = %1, solutions to (PGL) have
vortices which converge (after some time-rescaling) to solutions to

dX,'
I = 7v,'W(X1,~~~7XN)

[Lin '96, Jerrard-Soner '98, Lin-Xin '99, Spirn '02, Sandier-S '04]

» For well-prepared initial data, d; = £1, solutions to (GP)
dX,‘ n 1
ar —ViW(xa, ..., xn) V™ = (=02,01)

[Colliander-Jerrard '98, Spirn '03, Bethuel-Jerrard-Smets '08]

All these hold up to collision time

v

v

For (PGL), extensions beyond collision time and for ill-prepared data
[Bethuel-Orlandi-Smets '05-07, S. '07]



A word about dimension 3 (or higher)

v

Leading order of the energy becomes |d|L|log | where L= length
(or area) of vortex line (integer multiplicity rectifiable current)

v

Minimizers/solutions to (GL) converge to length minimizing /
stationary currents (= straight lines)

[Riviere '95, Lin-Riviere '01, Sandier '01, Bethuel-Brezis-Orlandi '01,
Jerrard-Soner '02]

(PGL) — mean curvature motion (Brakke)
[Bethuel-Orlandi-Smets '06]

(GP) — binormal flow (partial results)
[Jerrard '02]

v

v



The Ginzburg-Landau model with gauge

(1—[u?)?

1
Ge(u,A) = > /Q |Vu — iAul?® + |curl A — hey|? + 522

v

A:Q — R? = gauge field
h = curl A := 9,A; — 91 Az induced magnetic field

v

v

hex= intensity of applied magnetic field, causes vortices to appear,
instead of an (artificial) boundary condition

v

GL system

—(V—iAPu=%1—-u?) inQ

—V+h = (iu,Vu — iAu) in Q
h = hex on 09
(Vu—iAu)-v=0 on 09.

» + dynamical versions



Behavior of minimizers in terms of huy

» there exists a first critical field H,, ~ Cqlloge| ase — 0
» for hex < Hg, no vortices

» for hex = H., one vortex appears, degree +1, near a point p in the

“center" of the domain
» for hex > He, + clog |loge| a second vortex appears

» vortices get added one by one for each increment of log |loge|, they
tend to minimize an effective interaction energy

» as soon as hg, — He, > log |loge| the number N of vortices is
unbounded

[S. '98, Sandier-S '00-07]



Vorticity

» In the case N. — oo, describe the vortices via the vorticity :
supercurrent

Je = {ius, V) (a, b) := %(31_3+ ab)

vorticity

le = curl jo

> = vorticity in fluids, but quantized: p. ~ 273", d;da:

» 3 a gauged-version

u : .
> s M signed measure, or probability measure,



Mean-field model for energy minimizers

» Minimizers of G. have vorticity pi., such that u./hex converges to
the minimizer i, of

1 1
O3 = 55 [ Inl+3 [ VA + lh, =17

where
—Ah,+h,=p inQ
h,=1 on 0N
A= lim hex }
e—0 | log €|

» Minimal energy
min G. ~ h2, &, (114).
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» Minimizers of G. have vorticity pi., such that u./hex converges to
the minimizer i, of

1 1
O3 = 55 [ Inl+3 [ VA + lh, =17

where
—Ah,+h,=p inQ
h,=1 on 0N
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e—0 | log €|

» Minimal energy
min G. ~ h2, &, (114).

» One can observe that

e 0 A >~ | Ho ~ Ao loge]|

[Sandier-S "00]



» 1. corresponds to the solution of a free-boundary problem (obstacle
problem), also like equilibrium measure in potential theory

» The optimal p, = —Ah, + h, is a uniform density on a subdomain
wy C Q, which grows as A > \q grows

Figure : Vortex patch

» Number of vortices N is proportional to hex > Aqg|loge|
» Valid as long as hey < 6%



Mean-field model for non minimizing solutions

If u. is a solution to the gauged GL equations and hey > 1, then
tte [ hex — 1 solution to

uVh=0 h=(-A+1)"1u

in a suitable weak sense (~ Delort)
[Sandier-S '04]

~> h is constant on the support of

o ~ O

Q



Microscopic behavior for energy minimizers

Needs to look at the next order in the energy expansion, and blow-up
configuration by factor v/N. or v/ hey.




minimizes W(A) where

» After blow-up near a.e. point in wy, the vortices of a minimizer
converge to an infinite discrete point configuration A which

W(A) = min{W(H), -AH =21y "5, — 1}
W(H) = lim 1 lim

peEN
R—00 |BR‘ n—0 (/]Rz\UpEAB(p7n)
[Sandier-S "12]

Xex [ VHZ47log Y xee(p))

peEN




» After blow-up near a.e. point in wy, the vortices of a minimizer
converge to an infinite discrete point configuration A which
minimizes W(A) where

W(A) = min{W(H), -AH =2 > 5, — 1}

. .
W(H) = lim —— lim (/ Xee| VH*+mlogn )  xe (P))
R0 [Br| n=0\ Jpa\U, aB(om) ;JEZ/\ i

[Sandier-S "12]
» infinite configuration analogue of the BBH renormalized energy

» total logarithmic interaction of an infinite system of point charges,
neutralized by a uniform negative background



» After blow-up near a.e. point in wy, the vortices of a minimizer
converge to an infinite discrete point configuration A which
minimizes W(A) where

W(A) = min{W(H), -AH =2 > 5, — 1}

pEN

. .
W(H) = lim lim (/ Xee| VH*+mlogn )  xe (P))
R=o0 |Bg| 10 \, R\UpenB(p) ;JEZ/\ )

[Sandier-S "12]
» infinite configuration analogue of the BBH renormalized energy

» total logarithmic interaction of an infinite system of point charges,
neutralized by a uniform negative background

» For periodic configuration there is a more explicit expression:
=G Z G(ai — aj + G
i#]

G= periodic Green function

» Among Bravais lattices (=AZ?) of volume 1, W is uniquely
minimized by the triangular lattice (=60°)



The Abrikosov lattice

Compare with Abrikosov lattice seen in experiments in superconductors:

~~ conjecture: the triangular lattice achieves the global minimum of W



Dynamics in the case N, > 1

Back to

gel

N
£ _du Aqu

[lo

(1= |uP)

in R?

iN.Oyu = Au+

(1= [u?)

in R?




Dynamics in the case N. > 1

Back to

N:

e _ L2
|Ioge|a Au+ (1 lul?) in R (PGL)

iN:Oru = Au+ (1 — |uf?) in R?| (GP)

» For (GP), by Madelung transform, the limit dynamics is expected to
be the 2D incompressible Euler equation. Vorticity form

Orpp —div (uV+h) =0  h=-A"'py (1)

» For (PGL), formal model proposed by
[Chapman-Rubinstein-Schatzman '96], [E '94]: if 4 >0

Oppe — div (uVh) =0 h=—-A"1pu (2)

formally the gradient flow of F(p) = 3 [ |[VA™1p|? for the
2-Wasserstein metric (a la [Otto Ambr05|o Gigli-Savaré])



» Study of (2): existence of weak solutions (weak notion a la Delort),
uniqueness in the class L>°, gradient flow approach, asymptotic
self-similar profile

1
t)=—1
wt) = —1e,

[Lin-Zhang '00, Du-Zhang '03, Ambrosio-S '08, S-Vazquez '13]

Rigorous convergence results:
» (PGL) case : [Kurzke-Spirn '14] convergence of u./(2mN.) to p
solving (2) under assumption N. < (loglog |loge|)Y/* +
well-preparedness

» (GP) case: [Jerrard-Spirn '15] convergence to u solving (1) under
assumption N, < (log |loge|)'/? 4 well-preparedness

» both proofs “push" the fixed N proof (taking limits in the evolution
of the energy density) by making it more quantitative

» difficult to go beyond these dilute regimes without controlling
distance between vortices, possible collisions, etc



Alternative method: the “modulated energy"

» Exploits the regularity and stability of the solution to the limit
equation
» Works for dissipative as well as conservative equations

» Works for gauged model as well



Alternative method: the “modulated energy"

» Exploits the regularity and stability of the solution to the limit
equation

» Works for dissipative as well as conservative equations

» Works for gauged model as well
Let v(t) be the expected limiting velocity field (such that (Vu.,iu.) — v
and curlv = ). Define the modulated energy

1 1— 2)\2

E(u,t) = 7/ |Vu — iuN.v(t)? + %,
2 R2 2e

modelled on the Ginzburg-Landau energy.
Analogy with “modulated entropy" methods in kinetic to fluid limits.



Main result: Gross-Pitaevskii case

Theorem (S. '15)

Assume u. solves (GP) and let N. be such that |loge| < N, < % Let v
be a L>=(R ., C%1) solution to the incompressible Euler equation

0;v = 2vtcurlv + Vp in R?
divv=20 in R?,

with curlv € L>(L1).
Let {u:}.~0 be solutions associated to initial conditions u®, with |u?| < 1
and £.(u?,0) < o(N2). Then, for every t > 0, we have

Ni<vu5,iu€> — v in L*(R?).
=

Implies of course the convergence of the vorticity p. /N — curlv



Main result: parabolic case

Theorem (S. '15)

Assume u, solves (PGL) and let N. be such that 1 < N. < O(]logel).
Let v be a L>=([0, T], C*7) solution to

0yv = —2vcurlv + Vp in R?
o if N. < |loge|

divv=0 in R?,

1
o if N. ~ \|loge] Orv = XVdiv v —2veurlv in R

Then under same assumptions on initial data, for every t < T we have

1

—(Vue,iue) = v in L}
Ne

(R%), p<2.

Taking the curl of the equation yields back the
Chapman-Rubinstein-Schatzman-E equation (2) if N, < |loge
if N. o< |logell

, but not




Proof method and difficulties

» Go around the question of minimal vortex distances by using instead
the modulated energy and showing a Gronwall inequality

%Ss(ue(t)) < C(E(ue(t)) — wN|logel) + o(N€2)

» In the parabolic case, it requires removing the energy concentrating
in the vortices, control by “ball construction" method, and a control
on the vortex velocities (“product estimate")

> Relies on algebraic simplifications in computing 4 &.(u-(t)) which
reveal only quadratic terms

» Uses the regularity of v to bound corresponding terms

» Insight is to think of v as a spatial gauge vector and div v (resp. p)
as a temporal gauge
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