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Wave propagation

e Various physical contexts: nonlinear optics, plasma physics, fluid

mechanics, ferromagnetism, astrophysics. ..

e Competition between two phenomenons:
— dispersion or dissipation: the wave tends to spread/dissipate
during propagation.
— concentration: nonlinear interaction with the medium (focusing

laser beams, gravitational force, ...)

e One canonical model: Nonlinear Schrodinger equation,

0ru+ Au+ ululP~! =0
(NLS) o utulyl r e R wu(t,z) €C.

Ujt=0(2) = ug(r) smooth




Qualitative description
e Local existence well understood (1980’s)

e Existence of special solutions (stationary, periodic, travelling
waves).
— ODEFE’s, calculus of variations.

— Special nonlinear waves: solitary waves.

e Long time asymptotics behavior of solutions:
— asympotic generic behavior: scattering, soliton resolution
problem.
— Interaction.

— blow up and concentration of energy.




Conservation laws and structure
i0su + Au+ululP~t =0, zeR%
e Conservation laws:

Energy : E(u) =5 [|Vul® — ;17 [ JulP* = E(uo)
Mass: [ |u]?* = [|uol?

e Scaling symmetry:

uy(t,x) = )\%u()@t, Ax), A >0,
IVoeun(t, )z = [[Voeu(X?t, )2 for s =§ — ;2.

e (ritical space is Hse.




Critical and super critical problems

s. = 0: mass critical case.
— smallest nonlinearity for which blow up is possible.

— critical space is L?: blow up happens by concentration of the

Imnass.

s. = 1: energy critical case.

— borderline case

— relevant for some geometrical models (wave maps, Schrédinger
maps, . .. )

s. > 1: energy super critical case.
— little known

— conservation laws control weak norms.




The blow up problem

Problem: describe mechanisms of energy concentration /singularity
formation.

e Heat equation: [Giga, Kohn 1985|, [Herrero, Velasquez, 92|,
|Matano, Merle 04|, [Mizoguchi 06|, maximum principle for the
scalar problem.

e Dispersive equations:
— Semilinear wave/(NLS) equations: [John 1975|, [Alinhac 90|,
|[Martel, Merle 2000], [Perelman 00|, [Merle, R. 01|, [Krieger,
Schlag, Tataru 07|, |Merle, Zaag 08-12|, [Merle, R., Rodnianski
14],

— General relativity and compressible fluids |Christodoulou 10].




The energy super critical NLS problem

Opu + Au+ uluP~t =0
(NLS) Ot Autulul r R w(t,x) eC.

ujt=0(x) = up(x) smooth

We consider the energy super critical range

d 2 o1
Se = 7 — —— :
c 2 p-1

Problem Description of blow up bubbles:

e Smooth well localized initial data, robust construction

e Genericity /stability of the blow up bubble




Self similar profile

Look for solutions of the form

u(t, o) = — @(ﬁ%),kﬁﬁz’T—t

A(t)»—T
then
2
@)A@+uﬁ»yﬂ@%4:o,A@:——T¢+ywmx
p —_
e Singular homogeneous solution: &* = .
rp—1

e Regular solution: for the heat, requires p < p;r..

From now on,

4
Spi =1+
p=PpiL d—4—2wd—1(

—> Expectation: no self similar blow up.

implies d > 11).




Solitary wave profile

e Solitary wave: u(t,z) = Q(x),

Q'+ (d-1)L+Qr=0
QO)=1, Q(0)=0

e Asymptotic behavior (ODE’s):

Q(r) ~ CO; =®* as r — 4oc.

e Q¢ H'(RY): very bad stationary solution.




Type II blow up

|Merle, R., Rodnianski 14| Let p > psr. There exist C* compactly
supported data such that

with

k (87
(0%

At) ~ (T —t)e, a=ald,p) >0, k&N, k>§.

— Previous works for the heat |Herrero, Velasquez 92|, |Matano.
Merle 04|, [Mizoguchi 06]: based on Lyapounov functionals induced
by the maximum principle.

— Finite codimensional stability, [Collot 14| (wave).

— Related problems: Schrodinger/wave maps, harmonic heat flow,

..., critical cases.
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Perturbation of the solitary wave

e The solitary wave is stable by really small perturbations:
ug = Q + €0, |leo]lgr €1 implies T = 4oc.

— |Burq, Planchon, Stalker, Tahvildar-Zadeh 04|

— Infinite energy initial data.

e Description of the finite energy blow up bubble

ultyr) = Q4 2) (157 ) €

A(t) 71 A(t)
then
= +oo for s > s,
lim |Ju(t)]| g ,  Type II.
t—=T < 4+o00 for s < s,
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The flow near the solitary wave

e General problem: describe the flow near the solitary wave

e |Nakanishi, Schlag 10| for (NLS), [Martel, Merle, R.,10-13]| for
(gKdV) s. = 0, complete description of the soliton instability:
— blow up (stable) with a unique blow up speed
— scattering ie linear behavior as t — +o0o (stable)
— soliton behavior as t — +oo (threshold).

— Minimal critical elements.

e More blow up speeds |Krieger, Schlag, Tataru 07|, [Perelman 12|,
|Martel, Merle, R. 12| : threshold dynamics.
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Heart of the analysis

step 1 Construction of an approximate solution

— Derivation of an ODE for scaling

— Quantization of blow up speeds.

step 2 Control of the infinite dimensional part

— Energy method (non radial also)

— Essential role of scaling and super critical norms.

[llustration on a slightly simpler model: the radial Stefan problem.
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Exterior Stefan problem

e Melting of an ice ball (no surface tension): the temperature

u : Q(t) — R evolves according to:

Oru — Au =0 in Q(t)
Opu = Vpp and u=0 on 0Q(t).

e Spherical symmetry: for Q(t) = {x € R?; |z| > A(t)} and = € R?:

Up — Upy — %ur =0 in ()

ur (8, (1) = =A(t), u(t,A(t)) =0

e free boundary problem: melting/cooling and concentration of

energy on the boundary?
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Melting /cooling regimes

|Hadzic, R. 15|: There exist finite time melting regimes:

(T — )12 2VITOL gable

A(t) ~io S =N
(t) ~tor (T—t) =, k € N*" codimension k
|log(T'—t)| 2k

\

— pioneering work [Herrero, Velazquez 00|
— connection to |R., Schweyer 10| on the heat flow.

|Hadzic, R. 15]: There exist finite time cooling regimes:

1

logi)2’ codimension k, k €N
0g

)\(t) — )\oo ~t——+o0 tk_|_1(

— duality between melting/cooling.
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Renormalization

e Renormalization

ds 1 r

u(t,r) =v(s,y), dt A2(t)’ J= Tt)

so that
Osv — Av+a(s)yd,v =0, y>1, a=—3%L
v(s,1) =0, Oyv(s,1)=a

e Boundary is fixed y =1

Problem: extract the dynamical system for a with

a(s) -0 as s — +oo, type Il concentration.
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Spectral problem

—A + byd,, - —A + 20,,
v(1) =0 v(vb) =0
— Thin boudary layer z ~ vb < 1.
e On R? with radial symmetry, spectral basis

(—A + 20,)Pr = M\ P, A =2k, Pr = Laguerre polynomial.

e Lyapounov Schmidt like argument (singular):

(—A 4+ 20;)Vbk = Mo kUb .k

; )\b,k ~ 2k +
Vpx(VD) =0

llogb|

— Attention: 1 (2) ~ 2* for z > 1!
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Approximate solution

Inject an ansatz
v(s,y) ~ Z;?:Obj(s)wb,j (y) into Osv — Av + a(s)yd,v =0,
then projecting onto the eigenmodes leads to the dynamical system:

% + bb; (2j + @) = 0, eigenvalue equation

— _1dx ds _ 1 '
a=—37, 9 = = scaling law

bs + 2b(b — a) =0, time dependance of the operator

a = Z?:obj (1 + @) , dynamical boundary condition

— ODE’s driving melting/concentration.
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Exact solution

Inject an ansatz

v(s,y) = Z?:Obj(s)wb(s),j(y) +e(s,9).

e Close energy estimates on € using sharp spectral gap estimates in

weighted spaces.
e Treat the time dependance of the operator.
e Need to use derivatives to close (H? theory): nonlinear algebra.

— Sharp use of dissipation and the parabolic structure.
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Conclusion and perspectives

Understanding of some instability mechanisms near the solitary

wave in parabolic and dispersive problems.

Parabolic setting: refined energy method using sharp spectral

gap estimates.
Extension to the non radial case in progress.

First steps towards: classification, more complicated problems.
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