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The inviscid limit of the Navier-Stokes equations near the 3D Couette flow

Couette flow

Navier-Stokes system

A viscous incompressible fluid is governed by the Navier-Stokes system :

∂tv + v · ∇v +∇p = ν∆u (1a)

∇ · v = 0, (1b)

where v ∈ RD is the velocity, p is the pressure and ν = Re−1 denotes the
inverse Reynolds number.

We will be working in 2D or 3D:

In the 3D setting: (x , y , z) ∈ T× R× T.

In the 2D setting: (x , y) ∈ T× R.
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Couette flow

Couette flow

Consider a viscous incompressible fluid flowing with velocity (y , 0, 0)
(sometimes called the ‘Couette flow’).

Figure : The simplest non-zero fluid motion imaginable

We want to know what happens if we make a very small disturbance to
this flow, e.g : a/ does the fluid motion settle back down,
b/ does it oscillate periodically
c/ or does it go completely turbulent?

We will be studying this in the simplest 3D setting: (x , y , z) ∈ T× R× T
or 2D setting (x , y) ∈ T× R.
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Couette flow

Hydrodynamic stability

Understanding the stability of laminar flows and the transition to turbulence is
one of the main objectives of hydrodynamic stability theory :

One of the first and most influential experiments in the field were those of
Reynolds in 1883, which demonstrated the instability of the laminar flow
in a pipe for sufficiently high Reynolds number.

However, such instabilities appeared inconsistent with theoretical studies,
which suggested spectral stability independent of Reynolds number for a
variety of simple laminar flows, including variations of the Couette flow

This leads to the so-called Sommerfeld paradox or turbulence paradox:

One of the first main explanation was given by W. Orr (1866-1934) in 1907 and
is based on transient growth, now usually refered to as the Orr mechanism.

There are other explanations : lift-up effect, secondary instability, subcritical
transition or by-pass transition.
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Couette flow

Transition threshold

One way to address this paradox is to observe that while the flow is
technically stable for all finite Reynolds number, the set of stable
perturbations shrinks as the Reynolds number increases.

One can try to determine how the maximal size of stable perturbations in
a given norm, the “transition threshold” , will scale with respect to the
viscosity :

It will be important to note that the transition threshold depends on the
norm and that different norms may result in different answers. One way to
see this is that at high Reynolds numbers, the viscosity will not suppress
the high frequencies and echoes (resonances) have more time to yield
growth.
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Couette flow

Transition threshold

Goal: for a given norm N, find a γ = γ(N) such that

‖uin‖N � Re−γ ⇒ asymptotic stability

‖uin‖N & Re−γ ⇒ possible instability.

This γ is usually called the transition threshold.

A great deal of work has been devoted to estimating γ for various laminar
flow configurations (Orszag et. al., Trefthen et. al., Waleffe,
Chapman,Reddy et. al. and many others...)

For the problem we are considering, estimates range in 1 ≤ γ ≤ 7/4.

We prove: (A) for N sufficiently strong (Gevrey class) that γ = 1 and
(B) we identify the only possible instability for disturbances of size
Re−1 . ‖uin‖N . Re−2/3+δ.

This is a 3D effect. Indeed, for sufficiently regular perturbations, the 2D
Couette flow is nonlinearly, asymptotically stable (in Gevrey spaces) uniformly
at high Reynolds number γ = 0.
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Couette flow

We study the 3D Navier-Stokes equations near the Couette flow in the
idealized domain (x , y , z) ∈ T× R× T: if u + (y , 0, 0)T solves the
Navier-Stokes equation, then the disturbance u solves

∂tu + y∂xu + u · ∇u +∇p =

−u2

0
0

+ ν∆u (2a)

∇ · u = 0, (2b)

where ν = Re−1 denotes the inverse Reynolds number,
p can be split into two parts : p = pNL + pL where

∆pNL = −∂iuj∂ju
i (3a)

∆pL = −2∂xu2 (3b)

pNL is the nonlinear contribution to the pressure due to the disturbance and
pL is the linear contribution to the pressure due to the interaction between the
disturbance and the Couette flow.
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Couette flow

The linearized problem

Let us start by the linearized problem.

At the linear level, one can uderstand the paradox by the fact that the
linearization of NS around Couette flow is non-normal, which means a large
transient growth before eventual decay

The suggestion that this is the source of the observed instability goes back
to Orr in 1907, even though he was thinking about a 2D non-normal
effect called the Orr mechanism, which will not be the main cause of
transient growth in 3D. Indeed, in 2D we have asymptotically stability (in
a suitable sense) uniformly at high Reynolds number.

In 3D, the main mechanism for transient kinetic energy growth is the 3D
non-normal effect known as the lift-up effect. The work of Trefethen et.
al. (TTRD93) forwarded the idea that the nonlinearity could interact
poorly with the non-normal behavior by repeatedly re-exciting growing
linear modes, producing a “nonlinear bootstrap” scenario.
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Couette flow

Four or five main linear effects:

We have two (stabilizing) linear effects: inviscid damping and
mixing-enhanced dissipation, which are both a result of the fluid mixing
itself. There is also the regular viscosity for the zero modes.

There are two destabilizing linear effects in 3D : lift-up effect and vorticity
stretching.

Of course there is also the destabilizing effect of the nonlinearity.

The main proof will be to make sure that the (stabilizing) linear effects are
strong enough to overcome the destabilizing effects and the nonlinearity.
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Couette flow

The linearized equation in 3D:

The linearized system reads :

∂tu + y∂xu =

−u2

0
0

−∇pL + ν∆u (4a)

∆pL = −2∂xu2 (4b)

∇ · u = 0. (4c)

Let us start by the 2D case and write the system in vorticity formulation
ω = ∂xu2 − ∂yu1:
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Couette flow

Linearized problem in 2D: inviscid damping and enhanced viscous dissipation

Linearization in 2D: vorticity formulation

ω solves:

ωt + y∂xω = ν∆ω (5)

∆ψ = ω u = ∇⊥ψ. (6)

The linear problem was explicitly solved by Kelvin in 1887.

The inviscid case, ν = 0, was studied more carefully by Orr in 1907.

His analysis is now known as the Orr mechanism.



The inviscid limit of the Navier-Stokes equations near the 3D Couette flow

Couette flow

Linearized problem in 2D: inviscid damping and enhanced viscous dissipation

The Orr mechanism I: mixing

Consider the inviscid case (ν = 0), where the solution is

ω(t, x , y) = ωin(x − ty , y)

Taking the Fourier transform:

ω̂(t, k, η) = ω̂in(k, η + kt).

Linear-in-time transfer of information to high frequencies!

Weakly converges back to equillibrium:

ω(t) ⇀< ωin >x=
1

2π

∫
ωin(x , y)dx .

Hence mixing is an infinite dimensional phenomenon,
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Couette flow

Linearized problem in 2D: inviscid damping and enhanced viscous dissipation

The Orr mechanism II: inviscid damping

Kelvin and Orr used the change of coordinates

z = x − ty

f (t, z , y) = ω(t, x , y)

φ(t, z , y) = ψ(t, x , y),

In the inviscid case f (t, z , y) = ωin(z , y).

φ satisfies

∂zzφ+ (∂y − t∂z)2φ = f

φ̂(k, η) = − f̂ (k, η)

k2 + |η − kt|2
.

We see the fundamental decay-by-mixing:

‖φk 6=0(t)‖HN . 〈t〉−2‖f ‖HN+2 = 〈t〉−2‖ωin‖HN+2 .

Damping costs regularity.
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Couette flow

Linearized problem in 2D: inviscid damping and enhanced viscous dissipation

The Orr mechanism II: Inviscid damping and transient linear growth

After undoing the change of coordinates we get the inviscid damping:

‖u1
k 6=0(t)‖2 + 〈t〉‖u2(t)‖2 . 〈t〉−1.

The velocity converges strongly back to a shear flow!

Recall:

φ̂(t, k, η) = − ω̂in(k, η)

k2 + |η − kt|2
.

Orr understood where the regularity loss comes from: consider a pure
plane wave with η � k:

Figure : The center image occurs at the critical time t = η/k (based on a picture
of Boyd). Information can just as easily unmix as it can mix!



The inviscid limit of the Navier-Stokes equations near the 3D Couette flow

Couette flow

Linearized problem in 2D: inviscid damping and enhanced viscous dissipation

The Orr mechanism II: Inviscid damping and transient linear growth

After undoing the change of coordinates we get the inviscid damping:

‖u1
k 6=0(t)‖2 + 〈t〉‖u2(t)‖2 . 〈t〉−1.

The velocity converges strongly back to a shear flow!

Recall:

φ̂(t, k, η) = − ω̂in(k, η)

k2 + |η − kt|2
.

Orr understood where the regularity loss comes from: consider a pure
plane wave with η � k:

Figure : The center image occurs at the critical time t = η/k (based on a picture
of Boyd). Information can just as easily unmix as it can mix!



The inviscid limit of the Navier-Stokes equations near the 3D Couette flow

Couette flow

Linearized problem in 2D: inviscid damping and enhanced viscous dissipation

The Orr mechanism II: Inviscid damping and transient linear growth

After undoing the change of coordinates we get the inviscid damping:

‖u1
k 6=0(t)‖2 + 〈t〉‖u2(t)‖2 . 〈t〉−1.

The velocity converges strongly back to a shear flow!

Recall:

φ̂(t, k, η) = − ω̂in(k, η)

k2 + |η − kt|2
.

Orr understood where the regularity loss comes from: consider a pure
plane wave with η � k:

Figure : The center image occurs at the critical time t = η/k (based on a picture
of Boyd). Information can just as easily unmix as it can mix!



The inviscid limit of the Navier-Stokes equations near the 3D Couette flow

Couette flow

Linearized problem in 2D: inviscid damping and enhanced viscous dissipation

Viscous dynamics: enhanced dissipation

In the viscous case f satisfies

∂t f̂ (t, k, η) = −ν
(
|k|2 + |η − kt|2

)
f̂ (t, k, η)

We get Kelvin’s solution:

f̂ (t, k, η) = ω̂in(k, η) exp

[
−ν
∫ t

0

|k|2 + |η − kτ |2 dτ

]
.

If k 6= 0, then
∫ t

0
|η − kτ |2 dτ & min(η2t, k2t3)

By the time νt3 & 1, almost all of the k 6= 0 modes are wiped out:

‖ωk 6=0(t)‖2 . e−cνt3

.

Enhanced dissipation since it occurs on O(ν−1/3) time scales rather than
the heat equation O(ν−1) time scale.

Summary: the shear flow is transferring vorticity to high frequencies at a
linear rate in time, greatly enhancing the viscous term.
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Couette flow

Gevrey spaces

Gevrey classes. Maurice Gevrey (1884-1957)

In 1918, Maurice Gevrey defined the following:
Definition: Let m ≥ 1. Gm(T) (Gevrey space of class m) is the set of f = f (x)
s.t.

∃C , τ > 0, |f (k)(x)| ≤ C τ−k(k!)m, C , τ > 0, ∀ k, x .

Remark:

m = 1: analytic functions.

m > 1: Gm(T) contains compactly supported functions.

Proposition: f ∈ Gm(T) iff

∃C , σ > 0, |f̂ (k)| ≤ Ce−σk
1/m
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Couette flow

Gevrey spaces

Gevrey norms

In physical space

‖f ‖2

G
τ ; 1

m
σ

:=
∑
j∈N

(
τ j(j!)−mjσ

)2

‖∂ j f ‖2
L2 (7)

In Fourier space

‖f ‖2

G
τ ; 1

m
σ

:= ‖|ξ|σeτ |ξ|
1/m

f̂ (ξ)‖2
L2 (8)

m is the Gevrey class
σ is a Sobolev correction
τ is the radius of analyticity when m = 1.
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Couette flow

Gevrey spaces

Gevrey norms (mostly for analytic regularity) are used in many PDE problems :

Temam-Foias

Bardos-BenAchour

Ferrari-Titi

Levermore-Oliver-Titi

Sammartino and Caflisch

Kukavica-Temam-Vicol-Ziane

Rauch
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Couette flow

Main result in 2D

The inviscid limit near 2D Couette flow

Theorem (Bedrossian,Masmoudi,Vicol ‘14)

For s ∈ (1/2, 1), λ > λ′ > 0, δ > 0 and all integers α ≥ 1 there exists ε0,K0

(independent of ν) such that if ωνin = ωνS + ωνR is mean-zero and∫
|yωνin(x , y)| dxdy + ‖ωνS ‖Gλ;s + eK0ν

− (3+δ)s
2(1−s)

‖ωνR‖2 = ε ≤ ε0, (9)

then for all ν sufficiently small (independent of ε) the solution ων(t) satisfies
the following with all constants independent of ν and t:

‖ωνk 6=0(t, x + ty + Φ(t, y), y)‖Gλ′ ;s .
ε

〈νt3〉α (10)

‖ων0 (t, y)‖Gλ′ ;s .
ε

〈νt〉1/4
(11)

‖u1
k 6=0(t)‖2 + 〈t〉‖u2(t)‖2 .

ε

〈t〉〈νt3〉α , (12)

where

Φ(t, y) =

∫ t

0

eν(t−τ)∂yy < u1 > (τ, y)dτ ; (13)
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Couette flow

The linearized inviscid equation in 3D:

The linearized inviscid equation in 3D reads :

∂tu + y∂xu =

−u2

0
0

−∇pL (14a)

∆pL = −2∂xu2 (14b)

∇ · u = 0. (14c)

it has long been known that the quantity

q2 = ∆u2,

plays in dimension 3 a similar role to that played by the vorticity in dimension
2. This unknown dates back at least to Lord Kelvin. It solves :

∂tq
2 + y∂xq2 = 0. (15)
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Couette flow

The linearized inviscid equation in 3D:

If we rewind by the action of the Couette flow and define X = x − ty , write
U i (t,X , y , z) = ui (t, x , y , z), and Q2(t,X , y , z) = q2(t, x , y , z) and
PL(t,X , y , z) = pL(t, x , y , z), then we derive

∂tU =

−U2

0
0

−∇LPL (16a)

∂tQ
2 = 0 (16b)

∆LU2 = Q2 (16c)

∆LPL = −2∂XU2 (16d)

∇L · U = 0, (16e)

where we are using

∇L = (∂X , ∂y − t∂X , ∂z) (17a)

∆L = ∂XX + (∂y − t∂X )2 + ∂zz . (17b)

Here ‘L’ stands for ‘linear’.



The inviscid limit of the Navier-Stokes equations near the 3D Couette flow

Couette flow

The linearized inviscid equation in 3D:

We have from the elementary inequality 1
k2+(η−tk)2 . 〈η〉2

〈kt〉2 for any non-zero

integer k, the following fundamental inviscid damping estimate for any
σ ∈ [0,∞) and β ∈ [0, 2],

‖∆−1
L f 6=‖Hσ =

∑
l,k 6=0

∫ 〈k, η, l〉2σ ∣∣∣f̂ (k, η, l)
∣∣∣2(

k2 + l2 + |η − kt|2
)2 dη


1/2

.
1

〈t〉β ‖f 6=‖Hσ+β , (18)

where we use the notation :

f0(y , z) =
1

2π

∫
f (x , y , z)dx , (19a)

f 6= = f − f0, (19b)

where then ‘ 6=’ refers to the projection to non-zero Fourier frequencies in x .
In particular this yields the decay of U2:
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Couette flow

The linearized inviscid equation in 3D:

Linearized dynamics: inviscid damping

‖U2
6=‖HN . 〈t〉−2‖(Q2

in) 6=‖HN+2 .

This shows that the background shear flow suppresses x variations in u2 even
at infinite Reynolds number. In turn, this implies the inviscid damping of the
linear pressure PL:

‖PL‖HN . 〈t〉−2‖U2
6=‖HN+3 . 〈t〉−4‖(Q2

in) 6=‖HN+5 .

Hence, we see that U1
6= and U3

6= actually converge strongly as t →∞. We can
therefore infer that in general, there is no inviscid damping on u1

6= and u3
6=.
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Couette flow

The linearized inviscid equation in 3D:

Linearized dynamics: Lift-up effect

Next, we observe that the only contribution on the RHS of the linearized
equation which is not integrable in time is the X average of U2. Indeed, upon
taking X averages in X , we derive the degenerate Jordan block-type system

∂tU
1
0 = −U2

0 (20a)

∂tU
2
0 = ∂tU

3
0 = 0. (20b)

By (20), U1
0 grows linearly in time, and therefore the 3D Couette flow is linearly

(algebraically) unstable in the 3D Euler equations (although classically known
to be spectrally stable in the sense that there are no unstable eigenvalues).
Hence, we see that the instability is “non-modal”.
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Couette flow

The linearized inviscid equation in 3D:

Linearized dynamics: vortex stretching

Given that U2 will rapidly decay independent of Reynolds number, we can
integrate the momentum equations (in the new coordinates) for U1,U3 to
deduce (I am putting the effect of viscosity back)

‖U1
6=‖Hσ . ‖U‖Hσ+5 e−cνt3

‖U3
6=‖Hσ . ‖U‖Hσ+5 e−cνt3

.

This is sharp: there is no inviscid damping on U1 or U3 – in fact for times
1� t � ν−1/3, U1,3 are almost constant in time.

There is a direct cascade of kinetic energy as u1 and u3 are sent to smaller
and smaller scales.

Due to vortex stretching – hence this is a 3D effect.

In 2D, U1
6= also experiences inviscid damping and the linear solution returns

to equillibrium uniformly in Reynolds number
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Couette flow

The linearized inviscid equation in 3D:

Linearized dynamics: vortex stretching

If we take q = ∆u, we can also see the effect of the linear vortex stretching :
∂tq

1 + y∂xq1 + 2∂xyu1 = −q2 + 2∂xxu2 + ν∆q1

∂tq
2 + y∂xq2 = ν∆q2

∂tq
3 + y∂xq3 + 2∂xyu3 = 2∂zxu2 + ν∆q3.

In the new coordinate system : X = x − ty , Y = y and Z = z :
Q1

t = −Q2 − 2∂L
XY U1 + 2∂XXU2 + ν∆LQ1

Q2
t = ν∆̃LQ2

Q3
t = −2∂L

XY U3 + 2∂L
XZU2 + ν∆LQ3.

(21)

∇L = (∂X , ∂Y − t∂X , ∂Z ) (22)

∆L = ∂XX + (∂Y − t∂X )2 + ∂ZZ . (23)
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Couette flow

The linearized inviscid equation in 3D:

Proposition (Linearized Euler)

Let uin be a divergence free vector field with uin ∈ H7. Then the solution u(t)
to the linearized Euler equations (14) with initial data uin satisfies the following
for some final state u∞ = (u1

∞, 0, u
3
∞):

‖u2
6=(t)‖2 + ‖u2

6=(t, x + ty , y , z)‖H3 . 〈t〉−2‖u2
in‖H7 (24a)

‖u1
6=(t, x + ty , y , z)− u1

∞(x , y , z)‖H1 . 〈t〉−1‖uin‖H7 (24b)

‖u3
6=(t, x + ty , y , z)− u3

∞(x , y , z)‖H1 . 〈t〉−3‖uin‖H7 , (24c)

and the formulas

u1
0(t, y , z) = u1

in 0(y , z)− tu2
in 0(y , z) (25a)

u2
0(t, y , z) = u2

in 0(y , z) (25b)

u3
0(t, y , z) = u3

in 0(y , z). (25c)



The inviscid limit of the Navier-Stokes equations near the 3D Couette flow

Couette flow

The linearized viscous equation:

Unlike the 2D case, viscosity is really necessary to stabilize the growth coming
from the lift-up effect.

When accounting for finite Reynolds number we are now considering the
linearized Navier-Stokes equations

∂tu + y∂xu =

−u2

0
0

−∇pL + ν∆u (26a)

∆pL = −2∂xu2 (26b)

∇ · u = 0. (26c)

From (26), we can derive the mixing enhanced dissipation, as observed by Lord
Kelvin in 1887: As the Couette flow mixes information to small scales, the
viscous dissipation has an increasing effect on the solution.
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Couette flow

The linearized viscous equation:

To understand the origins of this effect, consider the evolution of q2 = ∆u2:

∂tq
2 + y∂xq2 = ν∆q2,

which, after re-writing in the variables (X , y , z) with X = x − ty and
Q2(t,X , y , z) = q2(t,X + ty , y , z), becomes

∂tQ
2 = −ν∆LQ2

∂tQ̂
2(k, η, l) = −ν(k2 + (η − kt)2 + l2)Q̂2(k, η, l),

which integrates to

Q̂2(t, k, η, l) = exp

[
−ν
∫ t

0

(k2 + (η − kτ)2 + l2) dτ

]
Q̂2

in(k, η, l).

The elementary inequality
∫ t

0
(k2 + (η − kτ)2 + l2) dτ & t3 for k a non-zero

integer gives a decay ∼ e−cνt3

for some c > 0 for all modes which depend on
X .
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Couette flow

The linearized viscous equation:

Proposition (Linearized Navier-Stokes)

Let uin be a divergence free vector field with uin ∈ H7. The solution to the
linearized Navier-Stokes equations u(t) with initial data uin satisfies the
following for some c ∈ (0, 1/3)

‖u2
6=(t)‖2 + ‖u2

6=(t, x + ty , y , z)‖H3 . 〈t〉−2e−cνt3

‖u2
in‖H7 (27a)

‖u1
6=(t, x + ty , y , z)‖H1 . e−cνt3

‖uin‖H7 (27b)

‖u3
6=(t, x + ty , y , z)‖H1 . e−cνt3

‖uin‖H7 , (27c)

and the formulas

u1
0(t, y , z) = eνt∆

(
u1
in 0 − tu2

in 0

)
(28a)

u2
0(t, y , z) = eνt∆u2

in 0 (28b)

u3
0(t, y , z) = eνt∆u3

in 0. (28c)

there are two important time-scales: the mixing dissipation time scale
O(ν−1/3) and the slow dissipation time scale O(ν−1). After O(ν−1/3), the x
dependence of the solution has essentially been completely damped, and the
evolution is dominated by the simpler (linearized) streak evolution (28).
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Couette flow

Streaks:

Particular solutions of NSE: Streaks

The streaks are particular solutions of our original system which do not depend
on x ; one can verify that in this case, our origianl system (2) reduces to :

(u2(t, y , z), u3(t, y , z)) solves the 2D Navier-Stokes system,

u1(t, y , z) solves a forced, linear advection-diffusion equation.
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Couette flow

Streaks:

Solutions of this general type are sometimes called “2.5 dimensional” and we
will refer to this particular family as streaks. That is:

Proposition (Streak solutions)

Let ν ∈ [0,∞), uin ∈ H5/2+ be divergence free and independent of x, that is,
uin(x , y , z) = uin(y , z), and denote by u(t) the corresponding unique strong
solution to (2) with initial data uin. Then u(t) is global in time and for all
T > 0, u(t) ∈ L∞((0,T ); H5/2+(R3)). Moreover, the pair (u2(t), u3(t)) solves
the 2D Navier-Stokes/Euler equations on (y , z) ∈ R× T:

∂tu
i + (u2, u3) · ∇ui = −∂ip + ν∆ui (29a)

∂yu2 + ∂zu3 = 0, (29b)

and u1 solves the (linear) forced advection-diffusion equation

∂tu
1 + (u2, u3) · ∇u1 = −u2 + ν∆u1. (30)
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Below threshold dynamics

Theorem

(Bedrossian-Germain-Masmoudi 2015) For all s ∈ (1/2, 1), all λ0 > λ′ > 0, all
integers α ≥ 10, all δ1 > 0, and all ν ∈ (0, 1], there exists constants
c00 = c00(s, λ0, λ

′, α, δ1) and K0 = K0(s, λ0, λ
′) (both independent of ν), such

that for all c0 ≤ c00 and ε < c0ν, if uin ∈ L2 is a divergence-free vector field

that can be written uin = uS + uR with ‖uS‖Gλ;s + eK0ν
− 3s

2(1−s) ‖uR‖H3 < ε, then
the unique, classical solution u(t) to (2) with initial data uin is global in time
and the following estimates hold with all implicit constants independent of ν, ε,
t and c0:

(i) transient growth of the streak: if t < 1
ν

,

‖u1
0(t)−

(
eνt∆

(
u1
in 0 − tu2

in 0

))
‖Gλ′ ;s . c2

0 (31a)

‖u2
0(t)− eνt∆u2

in 0‖Gλ′ ;s + ‖u3
0(t)− eνt∆u3

in 0‖Gλ′ ;s . c0ε (31b)
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Below threshold dynamics

Moreover, we have

(ii) uniform bounds and decay of the background streak

‖u1
0(t)‖Gλ′ ;s . min (ε〈t〉, c0) (32a)

‖u2
0(t)‖Gλ′ ;s .

ε

〈νt〉α (32b)

‖u3
0(t)‖Gλ′ ;s . ε (32c)

‖u1
0(t)‖4 .

c0

〈νt〉1/4
(32d)

‖u3
0(t)‖4 .

ε

〈νt〉1/4
; (32e)

(iii) the rapid convergence to a streak

‖u1
6=(t, x + ty + tψ(t, y , z), y , z)‖Gλ′ ;s .

ε〈t〉δ1

〈νt3〉α (33a)

‖u2
6=(t, x + ty + tψ(t, y , z), y , z)‖Gλ′ ;s .

ε

〈t〉2−δ1〈νt3〉α , (33b)

‖u3
6=(t, x + ty + tψ(t, y , z), y , z)‖Gλ′ ;s .

ε

〈νt3〉α . (33c)

Here ψ(t, y , z) is an O(c0) correction to the mixing which depends on the
disturbance and satisfies

‖ψ(t)− u1
0(t)‖Gλ′ ;s . ε〈t〉−1. (34)



The inviscid limit of the Navier-Stokes equations near the 3D Couette flow

Outline of the proof

New dependent variables

Outline of the proof: New dependent variables

Take qi = ∆ui for i = 1, 2, 3. A computation shows that (qi ) solves


∂t q
1 + y∂x q

1 + u · ∇q1 + 2∂xy u
1 = −q2 + 2∂xx u

2 − qj∂j u
1 + ∂x

(
∂i u

j∂j u
i
)
− 2∂i u

j∂ij u
1 + ν∆q1

∂t q
2 + y∂x q

2 + u · ∇q2 = −qj∂j u
2 + ∂y

(
∂i u

j∂j u
i
)
− 2∂i u

j∂ij u
2 + ν∆q2

∂t q
3 + y∂x q

3 + u · ∇q3 + 2∂xy u
3 = 2∂zx u

2 − qj∂j u
3 + ∂z

(
∂i u

j∂j u
i
)
− 2∂i u

j∂ij u
3 + ν∆q3.
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Outline of the proof

New independent variables

Outline of the proof: New independent variables

We start with the ansatz
X = x − ty − tψ(t, y , z)
Y = y + ψ(t, y , z)
Z = z ,

(this is motivated by a further requirement that ∆−1 have good properties in
the new coordinates.) Consider the simple convection diffusion equation on a
passive scalar f (t, x , y , z)

∂t f + y∂x f + u · ∇f = ν∆f .

Denoting F (t,X ,Y ,Z) = f (t, x , y , z) and U(t,X ,Y ,Z) = u(t, x , y , z), and ∆t

and ∇t for the expressions for ∆ and ∇ in the new coordinates, this becomes

∂tF +

u1 − t(1 + ∂yψ)u2 − t∂zψu3 − d
dt

(tψ) + νt∆ψ
(1 + ∂yψ)u2 + ∂zψu3 + ∂tψ − ν∆ψ

u3

 · ∇X ,Y ,ZF = ν∆̃tF ,

(35)

where ∆̃t is a variant of ∆t .



The inviscid limit of the Navier-Stokes equations near the 3D Couette flow

Outline of the proof

New independent variables

Eliminating u1
0 leads to the equation

u1
0 − t(1 + ∂yψ)u2

0 − t∂zψu3
0 −

d

dt
(tψ) + νt∆ψ = 0.

We now recast this equation on ψ in terms of C(t,Y ,Z) = ψ(t, y , z) and an
auxiliary unknown g = 1

t
(U1

0 − C) (this roughly measures the time-oscillations
of C). A variety of cancellations which take advantage of the precise structures
give {

∂tC + Ũ0 · ∇Y ,ZC = g − U2
0 + ν∆̃tC ,

∂tg + Ũ0 · ∇Y ,Zg = − 2
t
g − 1

t

(
U6= · ∇tU1

6=
)

0
+ ν∆̃tg ,

(36)

where Ũ =

U1
6= − t(1 + ψy )U2

6= − tψzU3
6=

(1 + ψy )U2
6= + ψzU3

6= + g
U3

.
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Outline of the proof

New independent variables

We also derive in the new coordinates (Q(t,X ,Y ,Z) = q(t, x , y , z)).
Q1

t + Ũ · ∇X ,Y ,ZQ1 = −Q2 − 2∂t
XY U1 + 2∂XXU2 + ν∆̃tQ

1 + NL1

Q2
t + Ũ · ∇X ,Y ,ZQ2 = ν∆̃tQ

2 + NL2

Q3
t + Ũ · ∇X ,Y ,ZQ3 = −2∂t

XY U3 + 2∂t
XZU2 + ν∆̃tQ

3 + NL3,

(37)

We will perform most of our estimates on this system coupled with the system
on the coordinates: C , g
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Outline of the proof

New independent variables

Nonlinear terms:

We introduce the followig splitting of the linear and nonlinear terms :

Ũ · ∇Qα = “transport nonlinearity” T (38a)

−Q j∂t
j Uα − 2∂t

i U j∂t
ijU

α = “nonlinear stretching” NLS (38b)

∂t
α(∂t

i U j∂t
j U i ) = “nonlinear pressure” NLP (38c)

−2∂t
XY Uα = “linear stretching” LS (38d)

2∂t
XαU2 = “linear pressure” LP (38e)

The pressure terms are named due to the fact that they arise originally from
pNL (in the nonlinear case) and pL (in the linear case) in (2). The stretching
terms originally arose from ∆(u · ∇uα) (in the nonlinear case) and ∆(y∂xuα)
(in the linear case).
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Outline of the proof

New independent variables

From the linear analysis, we expect that:

During the early times, t . ν−1/3, the solution has fully 3D nonlinear
effects until the enhanced dissipation eventually dominates.

During the middle times, ν−1/3 . t . ν−1, the solution is mostly in
x-independent modes and is slowly growing via the lift-up effect.

By the time t & ν−1 the solution has, in general, become extremely large
relative to ν but it is also very close to a globally regular x-independent
streak and eventually returns to Couette.

The goal is to prove that for the middle and later times, the solution retains
this special structure.
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Outline of the proof

New independent variables

There are several nonlinear mechanisms which have the potential to cause
instability and many have been proposed as important in the applied
mathematics and physics literature for understanding transition, see e.g. Craik
1971,TTRD 1993, Reddy-Schmid 1998, Schmid-Henningson 2001 We are
particularly worried about so called “bootstrap” mechanisms (see Trefethen
2005, Waleffe 1995): nonlinear interactions that repeatedly excite growing
linear modes.
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Outline of the proof

New independent variables

We classify the main effects by the x frequency of the interacting functions:

(2.5NS) (0 · 0→ 0) For 2.5D Navier-Stokes, this corresponds to self-interactions of
the streak.

(SI) (0· 6=→ 6=) For secondary instability, this effect is the transfer of
momentum from the large u1

0 mode to other non-zero modes .

(3DE) ( 6= · 6=→ 6=) For three dimensional echoes, these effects are 3D variants of
the 2D hydrodynamic echo phenomenon, namely nonlinear interactions of
x-dependent modes forcing unmixing modes (see Morrison 1998, Vanneste
2002,BM13). For t & ν−1/3, this effect should be wiped out by the
enhanced dissipation.

(F) ( 6= · 6=→ 0) For nonlinear forcing, this is the effect of the forcing from
x-dependent modes back into x-independent modes. Similar to (3DE),
this effect is over-powered by the enhanced dissipation after t & ν−1/3.
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Outline of the proof

Choice of the norms

Choice of the norms

The choice of the norms is extremely delicate and amounts to describing
precisely the possible distribution of information in Fourier space for Q and C .
The highest norms are derived from a toy model. Each Q i is measured with a
slightly different norm, of the form ‖Ai (t,∇)Q i (t)‖2 where Ai (t,∇) are special
Fourier multipliers. Let us just describe the norm used to measure Q3,

A3
k(t, η, `) = eλ(t)|k,η,l|s 〈k, η, l〉σ eµ|η|

1/2

w(t, η)wL(t, k, η, l)

(
1k 6=0 min

(
1,
〈η, l〉2

t2

)
+ 1k=0

)
.
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Outline of the proof

Choice of the norms

We now comment on the different components:

eλ(t)|k,η,`|s corresponds to a Gevrey- 1
s

norm, with decreasing radius,

〈k, η, σ〉σ gives a Sobolev correction (mainly for technical convenience).

The factor w comes from a toy model that estimates the “worst-possible”
growth of high frequencies due to weakly nonlinear effects. Roughly
speaking, it is taken to satisfy the following for |k|2 . |η| (hence√
|η| . t . |η|),

∂tw(t, η)

w(t, η)
∼ 1

1 + |t − η
k
| , when

∣∣t − η
k

∣∣ . η
k2 and w(1, η) = 1.

The last factor corresponds to a growth occurring for times large
compared to the frequency due to the linear vortex stretching. That Q1

and Q3 ultimately grow at least quadratically is evident on the linear level
(ignoring viscosity).
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Above threshold dynamics

Dynamics near the subcritical transition

Theorem (Above threshold dynamics)

(Bedrossian-Germain-Masmoudi 2015) For all s ∈ (1/2, 1), all integers α ≥ 10,
all δ � δ1 > 0 sufficiently small, and all ν ∈ (0, 1], there exists a norm
N = N(s, ν) and a constant c00 = c00(s, α, δ, δ1) (independent of ν), such that
for all c0 ≤ c00 and ε < ν2/3+δ, if uin ∈ L2 is divergence-free and ‖uin‖N < ε,
then u(t) exists at least until t = c0ε

−1 and following holds with all constants
independent of ν, ε, t and c0 (for t ≥ 1):

‖u1
0(t)− eνt∆

(
u1
in 0 − tu2

in 0

)
‖Gλ′ ;s . c2

0 (39a)

‖u2,3
0 (t)‖Gλ′ ;s + 〈t〉−1‖u1

0(t)‖Gλ′ ;s . ε (39b)

‖u1,3
6= (t, x + ty + tΦ(t, y , z), y , z)‖Gλ′ ;s .

ε〈t〉δ1

〈νt3〉α (39c)

‖u2
6=(t, x + ty + tΦ(t, y , z), y , z)‖Gλ′ ;s .

ε

〈t〉〈νt3〉α , (39d)

where Φ(t, y , z) is an O(c0) correction to the mixing.
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Above threshold dynamics

Discussion of result

This shows that that the secondary instability of a streak is the only
possible instability (for sufficiently smooth data).

The 2/3 threshold is predicted by weakly nonlinear analysis. A toy model
predicts that the inviscid nonlinear time-scale is τNL & ε−1/2. If we want
the enhanced dissipation to dominate we then need

τED ≈ ν−1/3 � ε−1/2 . τNL.
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Open problems

No-penetration boundaries? (Bouchet-Morita and C. Zillinger)

Other shear flows? (linear decay by Hao Jia-Sverak)

Damping asymmetries in radial vortices?

Do any of these ideas apply to Vlasov ? (with Bedrossian and Mouhot):
New proof of the Landau damping of (Mouhot-Villani)
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Open problems

No-penetration boundaries? (Bouchet-Morita and C. Zillinger)
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Open problems

Thank you for your attention!
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