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Noise, what is it?

It is commonplace that any real dynamical system is subject to
noise, which can be reduced but not eliminated.

Often the noise is phenomenologically described a by a small
diffusion. A simple example is

dx = V (x)dt + εdB

or, looking at the the evolutions of densities,

∂tu = −div(Vu) + ε∆u.

But from where does the noise come from?
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Interaction

The usual answer is that any system interacts with the rest of the
world: isolated systems are only an idealisation

For example consider the simple case

ẋ = V (x)

A weak interaction between x with a free field (infinitely many
degrees of freedom) may lead to a stochastic differential equation
of the type

dx = V (x)dt + εσdB

where dB is standard brownian motion.
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The hard truth

This is rather superficial since, in reality, the external degrees of
freedom are neither infinitely many, nor have a simple dynamics,
nor the dynamics is independent on x .
Most of all, the very concept of “isolated systems” rests on shaky
ground.

To better understand let us consider an interaction with degrees
of freedom having a complex fully coupled dynamics.

It turns out that such a study is far from trivial, hence we will
consider the absolutely simplest possible situation.
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Simplifying life

To this end, we will make the following assumptions

1. We consider the case of discrete, rather than continuous time.

2. We consider as few degrees of freedom as possible: one for
the “system”, one for the “exterior”.

3. We realise the “complex dynamics” of the external degree of
freedom via the simplest possible example of “chaotic” map.

4. We assume that the dynamics takes place in a compact space.

5. We assume a strong time scale separation.
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A “super simple” model

This brings us to the one parameter family of maps Fε ∈ C4(T2,T2)

Fε(x , θ) = (f (x , θ), θ + εω(x , θ)),

and the dynamics (xn, θn) = F n
ε (x0, θ0) with initial conditions

E(g(x0, θ0)) = ∫
T1
ρ(x)g(x , θ̄)dx θ̄ ∈ T1.

1. ∂x f (x , θ) ≥ λ > 1 (expanding map)

2. F0 has θ as a conserved quantity

3. ρ ∈ C2(T1,R+)
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Averaging

Note that we have θn = θ0 + ε∑n−1
k=0 ω(xk , θk), thus

θn − θm = O(ε(n −m)).

It is then natural to introduce the macroscopic time t = εn, this is
the time in which the variable θ may have a change of order one.
It is also covenient to introduce the continuous paths

Θε(t) = θ⌊ε−1t⌋ + (ε−1t − ⌊ε−1t⌋)(θ⌊ε−1t⌋+1 − θ⌊ε−1t⌋), t ∈ [0,T ].
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Since the Θε are uniformly Lipschitz, they belong to a compact set
in C0([0,T ],R), hence they have convergent subsequences. It is
possible to show that there exists ω̄ ∈ C3 such that all the
accumulation points Θ must satisfy the ODE

Θ̇ = ω̄(Θ)
Θ(0) = θ̄.

We have thus an isolated (autonomous) dynamics which emerges,
in first approximation, from the complex interaction with the
external degrees of freedom.
This type of results goes back, at least, to Anosov (1960) and
Bogolyubov-Mitropolskii (1961).
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Basic intuition

If it were ∂θf = ∂θω = 0, then

θn = θ0 + εn [1

n

n−1

∑
k=0

ω(f k(x0))] .

Note that:

1. the quantity in the square brackets is an ergodic average

2. an expanding map of the circle has a unique invariant measure
µ absolutely continuous w.r.t. Lebesgue (let h be the density)

3. the dynamical system (T1, f , µ) is exponentially mixing for
Hölder observables

Liverani Carlangelo–Tor Vergata Deterministic noise



A computation

Thus, setting ω̄ = µ(ω) and ω̂ = ω − ω̄,

E(∣θn − θ0 − εnω̄∣2) = ε2
n−1

∑
k,j=0

E(ω̂(xk)ω̂(xj))

≤ ε2C
n−1

∑
k,j=0

e−c ∣k−j ∣ ≤ Cε[εn].
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With some more work it is possible to show that the same holds in
the general case ∂θf ≠ 0, ∂θω ≠ 0 where now

ω̄(θ) = µθ(ω(⋅, θ))

and µθ is the unique a.c.i.m. of f (⋅, θ).
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Noise (linear)

But what happens for ε > 0 and/or for times longer than ε−1?

Let us consider the quantity ζε(t) = ε−
1
2 [Θε(t) −Θ(t)]. This are

the fluctuations around the average. A computations “similar” to
the previous one yields

E([ζε(t) − ζε(s)]4) ≤ C ∣t − s ∣2.

Hence, by Kolmogorow criteria, the sequence is tight.
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Under some mild technical condition, with considerable more work,
it is possible to prove that the accumulation points ζ of ζε satisfy

dζ = ω̄′(Θ(t))ζ(t)dt + σ(Θ(t))dB
ζ(0) = 0

where σ > 0 is given by an appropriate Green-Kubo formula.
This type of results are much more recent and, in the above form,
have been obtained by Dolgopyat (2004).
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Noise (non-linear)

We have thus seen that Θε ∼ Θ +√
εζ. On the other hand it is

possible to show that Θ +√
εζ ∼ Θ̃ε where

dΘ̃ε = ω̄(Θ̃ε)dt +
√
εσ(Θ̃ε)dB

We have, again, a system with small random noise of the type
introduced by Hasselmann (1976) and extensively studied by
Wentzell–Freidlin and Kifer in the 70’s-80’s.
But what ∼ really means? For which times does it hold?
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Noise (quantitative)

There exists α ∈ (0,1) and a coupling Pc such that, for all ε > 0
and t ∈ [ε1−α, ε−α], we have (De Simoi-Liverani-Poquet, w.i.p.)

Pc(∣Θε(t) − Θ̃ε(t)∣ ≥ ε)∣ ≤ Cεα.

In other words, if we do measurements up to the scale ε the
stochastic and deterministic process are indistinguishable for a very
long time.
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Larger fluctuations

The above essentially explores fluctuations of order up to
√
ε, the

range of validity of CLT (in fact the result is obtained by proving a
Local Central Limit Theorem). One may wonder if the observation
of larger fluctuation can allow to differentiate between a true noise
and a noise of dynamical origin.
This turns out not to be the case for moderate deviations:
let β ∈ (0,1/2) and consider a path x̄ ∈ C0([0,T ],R) such that
∥x̄ −Θ∥C0 = εβ and the event

Qε,δ = {z(t) ∈ C0 ∶ ∣z(t) − x̄(t)∣ ≤ δεβ}
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Then (De Simoi-Liverani 2014)

P(Qε,δ) ∼ e
− 1

2
ε−1 infz∈Qε,δ ∫

T
0 σ(Θ(s))−1[z ′(s)−ω̄(Θ(s))]2

which is exactly the probability in the purely stochastic model.
Not so for large deviations. Indeed, while the rate function for the
random model is always as above, the rate function for the
deterministic system is rather different (Kifer 1998). In particular,
certain trajectories might have zero probability, while in the random
case all regular trajectories are possible. Let us be more precise.
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Invariant measures (random)

Consider the case in which ω̄ has 2N non-degenerate zeroes {θi}
with ω̄′(θ2i) < 0. Then the equation

Θ̇ = ω̄(Θ)

has {δθi} as invariant measures. On the contrary

dΘ̃ε = ω̄(Θ̃ε)dt +
√
εσ(Θ̃ε)dB

has only one invariant measure that is essentially of the form

∑i piNi ,ε(θ2i) where Ni ,ε is a Gaussian variable centred at θ2i and
of variance ∼ √

ε.
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Invariant measures (deterministic)

The deterministic system has infinitely many invariant measures,
yet the Physical Measures must be (essentially) of the form (De
Simoi-Liverani 2014)

νp = ∑
i

piµz2i ×Ni ,ε(z2i).

More precisely, for each initial measure µ as described, we have

inf
p
D((F n

ε )∗µ, νp) ≤ C max{εα, e−c
ε

lnε−1 n}

where D is the Wasserstein distance.
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Metastability

Yet,
D((F n

ε )∗νp, νp) ≤ εα ∀n ≤ e−cε
−1

,

Thus we have metastable states.
Similar results hold for the purely stochastic model
(Wentzell-Freidlin 1979): the distribution

∑
i

pi(t)Ni ,ε(θ2i)

evolves on the time scale e−cε
−1t . The evolution of the pi are

determined by the large deviations (Wentzell-Freidlin 1979).
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Not the same

What is drastically different between the random and the
deterministic case are the large deviation probabilities.
In the deterministic case one can have several invariant measures.
If the invariant measure is unique, then it will be typically
concentrated on one sink i1, that is 1 − pi1 ≤ e−cε

−1
, but that may

not be the sink where is concentrated the invariant measure of the
random model.
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Lyapunov exponents

Another relevant different between the random and the
deterministic model emerges when one considers the evolution of
two nearby initial conditions.
A way to do so is to compute the Lyapunov exponents.
One can show that for the random model the Lyapunov exponents
are always negative.
Not so for the deterministic model!
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For example (De Simoi-Liverani-Volk w.i.p.)

Fε(x , θ) = (20x+sin(2πθ) [sin(2πx) + sin(4πx)] , θ+ε cos(2πx)) mod 1.

has a unique physical (and SRB) measure ν and both Lyapunov
exponents are positive ν-a.s..
Thus the random model fails miserably in describing the full
interplay between the system and the noise.
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Conclusions

It seems that the concept of deterministic noise has some
reasonable meaning.
Gaussian noise provides an accurate phenomenological description
in the small fluctuation regime, but fails dramatically for long times
or when measuring correlations between different trajectories.

It remains thus open problem of providing a better
phenomenological description of deterministic noise.
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