
Complex dynamics,
bifurcations, and arithmetic

Laura DeMarco
Northwestern University



Complex dynamics and arithmetic geometry

Complex/Algebraic 
Dynamical Systems

Arithmetic Geometry



Complex dynamics and arithmetic geometry

Complex/Algebraic 
Dynamical Systems

Arithmetic Geometry

f : X ! X
Study orbits of points

x, f(x), f2(x), f3(x), . . .

X = algebraic variety/C

X = C and f = polynomial

X = C/(Z� iZ), a torus, with f(z) = 2z



Complex dynamics and arithmetic geometry

Complex/Algebraic 
Dynamical Systems

Arithmetic Geometry

f : X ! X
Study orbits of points

x, f(x), f2(x), f3(x), . . .

X = algebraic variety

Study set of rational points

X(k)

X = algebraic variety/C /k
k = Q, Fq, C(t), . . .

X = C and f = polynomial

X = C/(Z� iZ), a torus, with f(z) = 2z

X = A1
k and X(k) = k

X = elliptic curve/k, X(k) = ?



Complex dynamics and arithmetic geometry

Complex/Algebraic 
Dynamical Systems

Arithmetic Geometry

f : X ! X
Study orbits of points

x, f(x), f2(x), f3(x), . . .

X = algebraic variety

Study set of rational points

X(k)

X = algebraic variety/C /k
k = Q, Fq, C(t), . . .

dynamics               analysis/geometry               algebra (static)

X = C and f = polynomial
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Special case

Ĉ

'

f'

P 2 E is torsion if n · P = 0 for some n.

P 2 E is torsion

() P is preperiodic for '

() ⇡(P ) is preperiodic for f'

Take, for example, '(P ) = P + P = 2P .

⇡ degree 2
P ⇠ �P

elliptic curve
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ĥE(�P ) = ĥE(P )
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Néron Tate 1960s) The set of rational points E(k) forms a

finitely-generated group...



E = elliptic curve /k, with k = function field

Mordell-Weil Theorem for function fields. (Lang-Néron 1959,
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If f 2 k(z) is not isotrivial, there exists a constant B > 0

so that the set

{P 2 P1(k) : ĥf (P ) < B}
is finite, where

ˆhf is the canonical height on P1
(

¯k).

Baker’s theorem actually states:    (proof uses analysis on Berkovich P1)

=
)

For elliptic curves over function fields: (Lang-Néron 1959,

Néron Tate 1960s) If E/k is not isotrivial, then the set of torsion

points in E(k) is finite.

Complex-dynamics proof in (D., 2015).  Key ingredients:  

For rational functions over function fields: (Baker 2008)

If f 2 k(z) is not isotrivial, then the set of preperiodic points

in P1
(k) is finite.

non-isotriviality =) bifurcations =) degree growth of fn
(P )

Riemann-Hurwitz (topology) =) finiteness



Dynamical stability and bifurcations: 
the analytic input

X = Riemann surface

k = C(X) = meromorphic functions on X

f 2 k(z)
P 2 P1(k)

ft, t 2 X, a family of rational functions

P : X ! ˆC holomorphic

Bifurcations can be quantified by a measure, defined locally by

µP = �U

Theorem. (D. 2015) If µP = 0 on X then P is preperiodic for f .

U(t) = lim

n!1

1

(deg f)n
log |fn

t (P (t))|
a subharmonic 

potential function
(written for polynomial f)

(f, P ) is stable if the sequence {t 7! fn
t (P (t))}n is normal on X.

Compare: McMullen (1987), Dujardin-Favre (2008).  When P is a critical point 
of f, this stability coincides with traditional notion of structural stability.

the “bifurcation measure” on X



Example:  degree 2 polynomials ft(z) = z2 + t t 2 C

P = 0

Bifurcation measure µP is
harmonic measure on @M
(Douady-Hubbard, Sibony 1981,
Mañé-Sad-Sullivan 1983)
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Example:  degree 2 polynomials ft(z) = z2 + t t 2 C

P = 1

Bifurcation measure µP is

harmonic measure on @M
(Baker-D. 2014)

A Mandelbrot-like set
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p

2(2� t)) Qt = (3,
p

6(3� t))and
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are torsion points on Et.

Et = {y2 = x(x� 1)(x� t)}
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Let Et be the Legendre family of elliptic curves.
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p
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More generally:

for a, b 2 C(t),
assume nP 6= mQ for all

(n,m) 2 Z2 \ {(0, 0)}

Theorem. (Masser-Zannier, 2008–2012, Torsion anomalous points)

Let Et be the Legendre family of elliptic curves.

Recent result about elliptic curves
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Pink, Zilber....
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Simultaneously torsion

There are only finitely many t 2 C \ {0, 1} for which both Pt and Qt

are torsion points on Et.

(
)

Theorem. Let

ft(z) =
(z2 � t)2

4z(z � 1)(z � t)

Simultaneously preperiodic

Theorem. (Masser-Zannier, 2008–2012, Torsion anomalous points)

Let Et be the Legendre family of elliptic curves.

a 6= b 2 C \ {0, 1}

be the degree-4 Lattès family of rational functions. Fix a 6= b
in C \ {0, 1}. Then there are finitely many parameters

t for which both a and b are preperiodic.

Pt = (a,
p

a(a� 1)(a� t)) and Qt = (b,
p

b(b� 1)(b� t))



There are only finitely many t 2 C \ {0, 1} for which both Pt and Qt

are torsion points on Et.

(
)

Theorem. Let

ft(z) =
(z2 � t)2

4z(z � 1)(z � t)

In joint work with Xiaoguang Wang and Hexi Ye, building on my earlier 
work with Matt Baker, we gave a dynamical proof of this statement.  The 
proof uses both complex dynamics and non-archimedean analysis.

Theorem. (Masser-Zannier, 2008–2012, Torsion anomalous points)

Let Et be the Legendre family of elliptic curves.

Simultaneously torsion

be the degree-4 Lattès family of rational functions. Fix a 6= b
in C \ {0, 1}. Then there are finitely many parameters

t for which both a and b are preperiodic.

a 6= b 2 C \ {0, 1}

Pt = (a,
p

a(a� 1)(a� t)) and Qt = (b,
p

b(b� 1)(b� t))



The stronger,  “Bogomolov” version

Pt = (a,
p

a(a� 1)(a� t)) and Qt = (b,
p

b(b� 1)(b� t))

ĥa(t) := ĥEt(Pt)

Tor(a) := {t : Pt is torsion on Et} = {t : ˆha(t) = 0}

Et = {y2 = x(x� 1)(x� t)}

= Néron-Tate height

There exists ✏ > 0 so that

ĥa(t) + ĥb(t) � ✏

for all but finitely many t (and in particular, |Tor(a) \ Tor(b)| < 1)

Theorem. Fix a 6= b in Q, with a, b 6= 0, 1.

Compare:  Szpiro, Ullmo, Zhang
proof of the Bogomolov Conjecture



Three ingredients in the dynamical proof

2.  Equidistribution theorem for points of small height on P1 
(Baker--Rumely, Favre--Rivera-Letelier, Chambert-Loir, 2006)

3.  A study of the bifurcation measure 
µa = µb if and only if a = b

Compare:
Baker-D. 2011
Yuan-Zhang 2011
Ghioca-Hsia-Tucker 2012

1.  Infinite torsion sets:  bifurcations + Montel’s Theorem (1920)

The intersection Tor(a) \ Tor(b) is infinite if and only if a = b.

For every a, the set Tor(a) = {t : Pt is torsion on Et} is infinite.

For algebraic a 6= 0, 1, the set Tor(a) (or any infinite Galois

invariant subset) is uniformly distributed with respect to

a canonical measure µa on C \ {0, 1}.

Theorem. (Masser-Zannier, 2008–2012, Torsion anomalous points)

Let Et be the Legendre family of elliptic curves. Fix a 6= b in C \ {0, 1}.

Pt = (a,
p

a(a� 1)(a� t)) and Qt = (b,
p

b(b� 1)(b� t))
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1.  Infinite torsion sets:  bifurcations + Montel’s Theorem (1920)

2.  Equidistribution theorem for points of small height on P1 
(Baker--Rumely, Favre--Rivera-Letelier, Chambert-Loir, 2006)

Hardest part:  
estimates to show hypotheses 
are satisfied (need continuous 
potentials at singularities).

For every a, the set Tor(a) = {t : Pt is torsion on Et} is infinite.

The intersection Tor(a) \ Tor(b) is infinite if and only if a = b.

Theorem. (Masser-Zannier, 2008–2012, Torsion anomalous points)

Let Et be the Legendre family of elliptic curves. Fix a 6= b in C \ {0, 1}.

For algebraic a 6= 0, 1, the set Tor(a) (or any infinite Galois

invariant subset) is uniformly distributed with respect to

a canonical measure µa on C \ {0, 1}.

Pt = (a,
p

a(a� 1)(a� t)) and Qt = (b,
p

b(b� 1)(b� t))



Equidistribution on 

Let k be a number field. Fix a 2 k(t), with a 6= 0, 1, t.

ĥa(t) := ĥEt(Pt)

converge (in the weak-⇤ topology) to the bifurcation measure µa

on P1
(C).

In fact, the measures converge to a probability measure µa,v

on the Berkovich projective line P1
Cv

for each place v of k.
The measure µa,v is the Laplacian of the local height function.

height function on X:

µn =
1

|G · tn|
X

t2G·tn

�t

Take any infinite sequence of parameters tn where Ptn is torsion

on Etn . (Then
ˆha(tn) = 0 for all n.) Let G = Gal(

¯k/k).

X = C \ {0, 1}

This works for any sequence tn with

ˆha(tn) ! 0 as n ! 1.)

(
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There are only finitely many t 2 C \ {0, 1} for which both Pt and Qt

are torsion points on Et.

Pt = (a,
p

a(a� 1)(a� t)) and Qt = (b,
p

b(b� 1)(b� t))

(
)

Theorem. Let

ft(z) =
(z2 � t)2

4z(z � 1)(z � t)

Theorem. (Masser-Zannier, 2008–2012, Torsion anomalous points)

Let Et be the Legendre family of elliptic curves.

Simultaneously torsion

Simultaneously preperiodic

More generally:

there are no maps gt, ht,

commuting with ft for all t,
so that g(a) ⌘ h(b).

More generally:

for a, b 2 C(t),
assume nP 6= mQ
for all n,m 2 Z \ {0}

a 6= b 2 C \ {0, 1}

be the degree-4 Lattès family of rational functions. Fix a 6= b
in C \ {0, 1}. Then there are finitely many parameters

t for which both a and b are preperiodic.



Conjecture. Let V be an N -dimensional complex algebraic

variety in the moduli space Md of rational maps of degree d.
Let (a0, a1, . . . , aN ) be an (N + 1)-tuple of marked points.

Then the points are simultaneously preperiodic on a Zariski-dense

subset of V if and only if the points are dynamically related.

A collection of n points a1, . . . , an is dynamically related
along V if there exists a subvariety X ⇢ (P1

k)
n
, with k = k(V )

such that

(1) (a1, . . . , an) 2 X, and

(2) X is forward-invariant under (f, . . . , f)

with Matt Baker (2013): 

Zannier’s Question. Fix any one-parameter family of

rational functions {ft, t 2 X} and two points a, b : X ! P1
.

If a(t) and b(t) are simultaneously preperiodic for infinitely

many parameters t 2 X, what can we conclude about a and b?



Zannier’s Question. Fix any one-parameter family of

rational functions {ft, t 2 X} and two points a, b : X ! P1
.

If a(t) and b(t) are simultaneously preperiodic for infinitely

many parameters t 2 X, what can we conclude about a and b?

Goal 1: show equidistribution of these special parameters t.

Goal 2: analyze the bifurcation measures µa and µb.

Goal 3: If µa = µb then how are a and b related?

Theorem. (D. 2015) If µP = 0 on X then P is preperiodic for f .

Recall:

µP = �U

U(t) = lim

n!1

1

(deg f)n
log |fn

t (P (t))|



Special case: when the points are critical points

where h 2 C[t, z] commutes with an iterate f l
t for all t.

(1) the polynomial ft is PCF for infinitely many t

fn
t (ci(t)) = ht(f

m
t (cj(t)))

(2) every pair of active critical points ci, cj satisfies a critical

orbit relation,

Ingredient 1:  an arithmetic equidistribution theorem in the Berkovich 
projective line  (Baker-Rumely, Favre-Rivera-Letelier, Chambert-Loir, 2006)

Ingredient 2:  classical complex analysis, univalent function theory, Ritt’s 
decomposition theory (1925), Medvedev-Scanlon (2012)

Let ft be a 1-parameter family of polynomials of degree d � 2.

Assume the critical points ci(t) are polynomial in t, i = 1, . . . , d� 1.

Theorem. (Baker-D., 2013) The following are equivalent:



Higher dimensional parameter spaces

Bifurcation measure
on a Riemann surface  

Bifurcation currents 
on a complex manifold  

µP = �UP TP = @@̄UP

T k
P = (@@̄UP )

^k

ft, t 2 X, a family of rational functions

P : X ! ˆC holomorphic

k  dimCX
U(t) = lim

n!1

1

(deg f)n
log |fn

t (P (t))|

Question. If T k
P = T k

Q for some k, what can we conclude about

P and Q? Do their orbits coincide under iteration of ft?


